Quick Guide

Introduction

About Yamawa

Founded in Japan in 1923, Yamawa has made the excellence in taps, dies and centering tools manufacturing as its core mission. Since its foundation, the organization has been focusing on the research and development of the best technologies becoming in this way a global reference for the manufacturing of threading solutions. Products and production process quality has been for over 90 years a milestone, which still distinguishes Yamawa from its competitors: triple quality control on 100% of production, regular calibration of the machinery and the warranty of correspondence to Yamawa's production norms on each tools produced. Yamawa has been the first Japanese threading taps manufacturer to achieve ISO9001 certification. The company combines innovation of products and processes with high care for the environment and therefore has limited to the bare minimum the impact of its manufacturing plants and achieved ISO14001 in all the production sites.

Yamawa is headquartered in Tokyo and has 4 manufacturing sites distributed throughout Japan: Yonezawa, Fukushima, Aizu and Tsutsumi. With subsidiaries and commercial partners all over the world, Yamawa distributes its products globally and has reinforced the presence in Europe through the foundation of Yamawa Europe, based in Venezia-Mestre (Italy) which officially started operations on January 1st, 2016.

About this Quick Guide

The Quick Guide is a document designed to provide an introduction and summary of all the most important information included in our new general catalogue. The document presents a selection of all the main product lines arranged by work-piece material and the most relevant technical information:

- Simplified product search
- Easy access to technical information
- Light and handy printed edition

The Quick Guide is not meant to be a replacement of the catalogue but rather a complement to it as a taps quick selection tool. The general catalogue is always the main choice to have an overview of the complete range and to access all the technical information.

All latest updates and documents in digital format are available at www.yamawa.eu.

Yamawa japanese factories

Yonezawa Plant

(ISO9001:1996) (ISO14001:2003)

Yonezawa is the main manufacturing plant of the Yamawa Group, this location is equipped with production lines and is the Quality Control Center. The plant obtained ISO9001 certification in 1996. Of the four Yamawa plants, the Yonezawa location has the longest history of manufacturing and the highest production capacity. Products include roll taps, spiral pointed, pipe and hand taps. The Yonezawa Plant stepped ahead of our competitors by receiving ISO9001 before any other cutting tool manufacturers in Japan.

Fukushima Plant

(ISO9001:2000) (ISO14001:2002)

The Fukushima plant provides both tap production lines and in house facilities for the manufacturing of specialized production machine tools to produce the exceptional high quality cutting tools. This plant develops and manufactures special taps and die production equipments.

It also supplies these machines to our other manufacturing sites. Products include spiral fluted taps, dies and combined drills/countersinks as well as production machinery.

Aizu Plant

ISO9001:2000) (ISO14001:2002)

Equipped with the most sophisticated machine tools available, this plant is famous for its automation and robotized labor saving manufacturing processes. The plant is designed for mass production of the highest quality cutting tools and screw thread tools. Products include spiral fluted taps and carbide taps.

Tsutsumi Plant (ISO9001:2011) (ISO14001:2011)

The Tsutsumi plant is the main tool blank manufacturing operation of Yamawa group. This location is also the testing center where Yamawa executes the innovation in metal machining and performance tests of the products for the Yamawa group.

CONTENTS

l

ISO Code	р.	4
Hardness conversion table	p.	5
Explanation of icons	p.	6
Cutting taps applications	p.	7
Forming taps applications	р.	35
Technical information	р.	43
Old-new code cross reference	р.	73
Line-up index	р.	76

ISO Code

			Cut	ting	Ro	oll
			ta	ps	ta	ps
Gr.	Materials	Features		Page	e No.	
P1	Free cutting steel and structural steel	Rm < 500 N/mm ²	8	12	38	38
P2	Carbon steel and low alloy steel	Rm 500-700 N/mm ²	8	12	38	38
P3	Medium alloy steel and heat treated steel	Rm 600-800 N/mm ²	8	12	38	38
P4	High alloy steel	Rm 800-1000 N/mm ²	8	12	38	38
P5	Tool steel	Rm 900-1200 N/mm ²	8	12	38	38
P6	High tensile strength steel	Rm 1200-1600 N/mm ²	8	12	-	-
M1	Ferritic stainless steel	Rm 400-700 N/mm ²	16	18	38	38
M2	Austenitic stainless steel - good machinability	Rm 500-750 N/mm ²	16	18	38	38
M3	Austenitic stainless steel - medium machinability	Rm 550-850 N/mm ²	16	18	38	38
M4	Martensitic stainless steel	Rm 650-950 N/mm ²	16	18	-	-
M5	PH stainless steel	Rm 800-1250 N/mm ²	-	-	-	-
K1	Grev cast iron	HB 150-250	20	22	-	_
K2	Nodular cast iron	HB 150-350	20	22	_	_
K3	Austenitic cast iron	HB 120-260	20	22	-	-
K4	ADI cast iron	HB 250-500	20	22	_	_
NI1	Alluminium alloys $< 120\%$ Si		24	26	40	40
	Alluminium alloys $< 12\%$ Si		24	20	40	40
			24	20	40	40
	Rease allows and bronzo allows		24	20	40	40
N5			- 24	20		
N6	Fiber and composites			_		_
S1	Heat resistant super alloys - good machinability	HRC < 25	28	30	-	-
S2	Heat resistant super alloys - medium machinability	HRC 25-35	28	30	-	-
S3	Heat resistant super alloys - low machinability	HRC 35-45	28	30	-	-
S4	Low alloy Titanium - good machinability		-	-	-	-
S5	High alloy Titanium - medium machinability		28	30	-	-
H1	Hardened general steel	HRC 50-56	32	32	-	-
H2	Hardened bearing steel	HRC 54-62	32	32	-	-
H3	Hardened tool steel	HRC 60-65	32	32	-	-
H4	Hardened martensitic stainless steel	HRC 50-56	32	32	-	-
H5	Hardened white cast iron	HRC 48-55	32	32	-	-

Refer to pages 12-33 of the catalogue for the complete list of work materials.

Hardness conversion table

Conversion table from Rockwell C hardness of steel

Headness Bender Ling Accale Boxale Docale 19 Accale Boxale Boxale Software Software </th <th>Rockwell</th> <th>Vickers</th> <th>Brinell H</th> <th>lardness</th> <th>Ro</th> <th>ckwell Hardne</th> <th>SS⁻²</th> <th>Rockwe</th> <th>ll Superficial H</th> <th>ardness</th> <th>Shore</th> <th>Tensile</th> <th>Rockwell</th>	Rockwell	Vickers	Brinell H	lardness	Ro	ckwell Hardne	SS ⁻²	Rockwe	ll Superficial H	ardness	Shore	Tensile	Rockwell
HTC HV HD HDS HDS HDS HSS HSS - HDS 60 900 - - 65.0 - 76.1 92.9 85.8 77.4 97.5 - 67 66 862 - (739) 83.9 - 74.5 92.2 87.8 97.8 97.9 - 63 64 800 - (722) 83.4 - 73.8 97.4 70.0 88.8 88.7 - 63 67 - (688) 62.3 - 73.2 97.1 78.4 67.7 81.8 - 62.7 63.7 64.7 - 63 - 62.7 63.7 64.7 - 63.7 64.7 - 63.7 64.7 80.7 - 65.7 63.7 78.8 - 63.7 78.8 - 63.7 78.8 - 63.7 78.8 63.7 78.8 63.7 -	Hardness	Hardness	Standard ball	Tungsten Carbide ball	A scale	B scale	D scale	15-N scale	30-N scale	45-N scale	Hardness	Strength MPa ⁻¹	Hardness ⁻²
68 940 - - 76.9 92.2 84.4 75.4 92.7 - 68 67 900 - - 85.6 - 76.1 92.2 83.6 73.2 95.7 - 67 68 885 - - 75.4 92.2 81.9 73.0 91.4 81.1 71.0 91.8 99.9 67 - 63 77.2 - (72) 83.4 - 73.0 91.4 80.1 89.9 67 - 63.2 67.7 83.6 - 61.2 - 63.2 77.7 88.7 - 61.2 - 63.2 78.1 - 63.2 78 - 58.3 53.2 78 - 58.3 53.2 78 - 58.3 53.2 78 - 58.3 53.2 78 - 58.3 53.2 78 - 58.3 59.3 73.3 63.2 78.7 -	HRC	HV	н	В	HRA	HRB	HRD	HS15N	HS30N	HS45N	HS		HRC
67 68 685 - - 76.1 92.8 83.6 74.2 95 - 67 66 685 - (73) 83.9 - 74.5 92.2 81.9 72.0 91 - 65 64 600 - (72) 83.4 - 77.3 91.4 80.1 69.9 - 63 61 772 - (708) 82.8 - 77.2 91.4 80.1 69.9 7 - 63 62 74.4 - (708) 81.8 - 77.2 91.7 65.7 81.8 - 61 61 61 61 63 78.7 64.3 78 - 59 56 613 - 65.6 77.4 - 65.1 87.4 63.3 74 207.5 55 53 595 - 65.1 87.4 74.8 74.2 20.9 74	68	940	_	-	85.6	_	76.9	93.2	84.4	75.4	97	-	68
66 865 - 7.4.5 92.6 82.8 7.3.3 92 - 66 64 800 - (72) 83.4 - 7.4.5 92.2 81.9 7.3.0 91.4 81.1 77.0 97.0 87.4 88.1 - 63.2 63 772 - (70) 81.8 - 77.3 97.1 83.4 - 63.2 63 772 - (70) 81.8 - 77.5 66.7 81.2 - 60.9 80.8 77.6 66.7 81.3 78.7 84.3 78.4 - 85.5 80.3 78.7 84.3 - 66.3 86.3 78.4 - 66.4 86.9 74.4 63.3 78.7 - 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 56.5 56.5 56.5 56.5 56.5 56.5 <td< td=""><td>67</td><td>900</td><td>-</td><td>-</td><td>85.0</td><td>_</td><td>76.1</td><td>92.9</td><td>83.6</td><td>74.2</td><td>95</td><td>-</td><td>67</td></td<>	67	900	-	-	85.0	_	76.1	92.9	83.6	74.2	95	-	67
65 82 - (72) 83.9 - 7.5. 99.2 81.9 72.0 91 - 66 63 772 - (72) 83.4 - 73.0 91.4 80.1 69.9 87 - 63.2 61 720 - (670) 83.8 - 77.5 90.7 78.4 67.7 83 - 61 60 697 - (654) 81.2 - 77.0 90.7 78.4 67.7 83 - 63.2 83.3 76.5 64.3 78 - 65 57 633 - 576 613 577 79.0 - 66.5 87.9 73.0 60.3 77.4 73.0 60.3 77.4 73.0 60.3 77.4 73.0 60.3 77.4 73.0 60.3 77.4 73.0 60.3 77.4 73.0 60.3 77.4 73.0 60.3 67.4	66	865	-	-	84.5	_	75.4	92.5	82.8	73.3	92	-	66
	65	832	-	(739)	83.9	-	74.5	92.2	81.9	72.0	91	-	65
63 772 - (760) 82.8 - 72.0 91.4 89.1 89.1 89.7 - 63 61 700 - (660) 81.8 - 71.5 90.7 78.4 67.7 83 - 610 99 674 - (654) 81.2 - 70.7 90.2 77.5 61.3 76.6 61.5 80.1 - 69.2 89.3 76.5 64.3 76 - 58 59.5 - 560 77.6 63.7 78.4 69.2 78.3 7.3 60.2 77.4 - 56.4 57.7 - 57 - 56 55.5 - - 64.7 72.0 69.8 77.2 56.5 57.4 77 - 64.6 86.9 77.2 56.6 57.7 180.5 56.5 57.7 170.0 57.6 - 62.1 85.5 65.5 67.7 180.5 67.7 180.5 67.7 180.5 67.7 180.5 67.7 180.5 67.7 180.5 67.7<	64	800	-	(722)	83.4	_	73.8	91.8	81.1	71.0	88	-	64
662 7.66 - (670) 81.8 - 77.5 97.7 78.4 687.7 81 - 61 60 667 - (634) 60.7 - 689.9 683.7 76.5 66.5 80 - 69 57 66.3 - 595 79.0 - 68.5 80.3 77.3 80.3	63	772	-	(705)	82.8	-	73.0	91.4	80.1	69.9	87	-	63
61 620 647 - 653 - 71.5 90.1 78.4 67.7 833 - 61 59 663 - (684) 60.7 - 68.9 80.8 77.6 64.5 80 - 58 57 633 - 565 60.7 - 57.7 7.4 37.7 7.8 - 56 565 565 - 560 7.8.5 - 66.6 87.9 7.3.0 60.9 7.4 20.75 54 53 560 - 526 7.7.4 - 66.4 86.9 71.1 2.86.6 71 198.9 122 77.5 - 54 55 55 71.6 - 66.4 86.9 71.2 58.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 7	62	746	-	(688)	82.3	-	72.2	91.1	79.3	68.8	85	-	62
	61	720	-	(670)	81.8	-	71.5	90.7	78.4	67.7	83	-	61
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	60	697	-	(654)	81.2	_	70.7	90.2	77.5	66.7	81	_	60 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59	653	_	(034)	80.1	_	69.9	09.0 80.3	70.0	64.3	78		58
	57	633		595	79.6	_	68.5	88.9	74.8	63.2	76	_	57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	613	_	577	79.0	_	67.7	88.3	73.9	62.0	75	_	56
	55	595	_	560	78.5	_	66.9	87.9	73.0	60.9	74	2075	55
	54	577	_	543	78.0	_	66.1	87.4	72.0	59.8	72	2015	54
52 544 (500) 512 76.8 64.6 86.4 70.2 67.4 69.4 66.1 68.4 56.5 55.0 67.7 1780 50 513 (475) 481 75.9 62.1 65.0 67.6 53.8 66.6 1695 49 48 484 451 455 74.7 61.4 84.5 66.7 52.5 64.4 1635 43 47 471 442 44.3 74.1 60.8 83.9 66.8 50.3 62.1 153.0 46 454 446 421 72.1 55.2 63.1 47.5 57 138.4 44 42 412 390 300 71.5 - 56.2 80.9 61.3 45.5 56 1340 45 40 382 37.1 37.1 70.4 - 55.4 80.4 43.1 55.1	53	560	-	525	77.4	_	65.4	86.9	71.2	58.6	71	1950	53
51 528 (487) 496 76.3 - 63.1 85.9 69.4 66.1 68.1 176.0 50 49 498 (464) 469 75.2 - 62.1 85.0 67.6 53.8 66.1 1695 49 48 444 451 455 74.7 - 61.4 64.5 68.7 52.5 64.4 63.3 1500 47 47 471 44.2 44.3 73.6 - 60.0 83.5 64.8 50.3 66.2 1500 46 46 412 421 73.1 - 58.5 82.5 63.1 47.8 58 1430 42 412 390 300 71.5 - 56.9 81.5 61.3 44.5 56 1340 42 41 402 381 734 70.4 56.9 81.5 61.3 44.5 56 134.0 42 40	52	544	(500)	512	76.8	_	64.6	86.4	70.2	57.4	69	1880	52
50 513 (475) 481 75.9 - 63.1 85.5 66.5 55.0 67 1760 50 49 498 (464) 460 75.2 - 62.1 85.0 67.6 55.8 66.1 1985 49 47 471 442 443 74.1 - 60.8 83.9 65.8 51.4 63.3 1530 46 46 442 422 422 73.6 - 60.0 83.5 64.8 50.3 62.5 1530 46 44 442 400 400 72.0 - 57.7 82.0 62.2 46.7 57 1385 43 42 412 390 390 71.5 - 55.2 80.9 60.4 44.3 55 1295 41 40 392 381 381 70.9 - 54.6 79.9 58.6 41.9 52 1215	51	528	(487)	496	76.3	-	63.8	85.9	69.4	56.1	68	1820	51
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50	513	(475)	481	75.9	-	63.1	85.5	68.5	55.0	67	1760	50
48 484 451 455 74.7 - 61.4 84.5 66.7 52.5 64 1835 48 47 471 442 443 74.1 - 60.8 83.9 66.7 52.5 61.4 63 1580 46 45 448 421 421 73.1 - 59.2 83.0 64.0 49.0 60 1480 45 44 434 400 400 72.0 - 57.7 82.0 62.2 46.7 57 1385 44 42 412 390 390 71.5 - 56.9 81.5 61.3 45.5 56 1304 42 41 402 381 381 70.9 - 56.4 80.4 60.4 44.3 55 1295 41 40 392 361 364 68.4 109.0 52.3 78.3 56.9 38.4 49 1115 </td <td>49</td> <td>498</td> <td>(464)</td> <td>469</td> <td>75.2</td> <td>_</td> <td>62.1</td> <td>85.0</td> <td>67.6</td> <td>53.8</td> <td>66</td> <td>1695</td> <td>49</td>	49	498	(464)	469	75.2	_	62.1	85.0	67.6	53.8	66	1695	49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48	484	451	455	74.7	-	61.4	84.5	66.7	52.5	64	1635	48
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	47	471	442	443	74.1	-	60.8	83.9	65.8	51.4	63	1580	47
44 449 421 421 73.1 $-$ 59.2 83.0 64.0 49.0 600 1480 445 43 434 400 400 72.0 $-$ 57.7 82.0 63.1 47.8 58 1435 44 42 412 390 390 71.5 $-$ 56.9 81.5 61.3 45.5 56 1340 42 40 392 371 371 70.4 $-$ 55.4 80.4 45.5 43.1 54 1250 40 39 382 362 362 69.9 $-$ 53.1 78.8 77.7 40.8 51 1180 38 37 363 344 344 68.9 $-$ 53.1 77.8 55.9 38.4 49 1115 36 36 354 336 336 68.4 (109.0) 50.8 77.2 55.0 37.2 48 1080 36 37 363 327 311 311 66.8 (107.5) <td>46</td> <td>458</td> <td>432</td> <td>432</td> <td>73.6</td> <td>-</td> <td>60.0</td> <td>83.5</td> <td>64.8</td> <td>50.3</td> <td>62</td> <td>1530</td> <td>46</td>	46	458	432	432	73.6	-	60.0	83.5	64.8	50.3	62	1530	46
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	45	446	421	421	73.1	-	59.2	83.0	64.0	49.0	60	1480	45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	434	409	409	72.5	_	58.5	82.5	63.1	47.8	58	1435	44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	43	423	300	300	72.0		56.9	81.5	61.3	40.7	56	1300	43
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42	402	381	381	70.9	_	56.2	80.9	60.4	40.0	55	1295	41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	392	371	371	70.3	_	55.4	80.4	59.5	43.1	54	1250	40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	382	362	362	69.9	_	54.6	79.9	58.6	41.9	52	1215	39
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	372	353	353	69.4	_	53.8	79.4	57.7	40.8	51	1180	38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	37	363	344	344	68.9	_	53.1	78.8	56.8	39.6	50	1160	37
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	36	354	336	336	68.4	(109.0)	52.3	78.3	55.9	38.4	49	1115	36
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35	345	327	327	67.9	(108.5)	51.5	77.7	55.0	37.2	48	1080	35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	336	319	319	67.4	(108.0)	50.8	77.2	54.2	36.1	47	1055	34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	327	311	311	66.8	(107.5)	50.0	76.6	53.3	34.9	46	1025	33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	32	318	301	301	66.3	(107.0)	49.2	76.1	52.1	33.7	44	1000	32
3030228628665.3(105.5)47.775.050.431.342950302929427927964.7(104.5)47.074.549.530.141930292828627127164.3(104.0)46.173.948.628.9411910282727926426463.8(102.5)44.672.846.826.738860262526625325362.8(101.5)43.872.245.925.538840252426024724762.4(101.0)42.171.044.023.136805232325424324362.0100.042.171.044.023.136805222124823723761.599.041.670.543.222.035785222023822622660.597.840.169.942.320.735770212023822622660.597.840.169.441.519.63476020(18)230219219-96.533730(18)(16)222212212212-95.524650(12)<	31	310	294	294	65.8	(106.0)	48.4	75.6	51.3	32.5	43	980	31
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	302	286	286	65.3	(105.5)	47.7	75.0	50.4	31.3	42	950	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	29	294	279	279	64.7	(104.5)	47.0	74.5	49.5	30.1	41	930	29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	200	271	271	62.9	(104.0)	40.1	73.9	40.0	20.9	41	880	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	279	204	258	63.3	(103.0)	43.2	72.8	46.8	26.7	38	860	26
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	266	253	253	62.8	(102.5)	43.8	72.0	45.9	25.5	38	840	25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	260	247	247	62.4	(101.0)	43.1	71.6	45.0	24.3	37	825	24
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	254	243	243	62.0	100.0	42.1	71.0	44.0	23.1	36	805	23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	248	237	237	61.5	99.0	41.6	70.5	43.2	22.0	35	785	22
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	243	231	231	61.0	98.5	40.9	69.9	42.3	20.7	35	770	21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	238	226	226	60.5	97.8	40.1	69.4	41.5	19.6	34	760	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(18)	230	219	219		96.7	-	-		-	33	730	(18)
	(16)	222	212	212	-	95.5	-	-	-	-	32	705	(16)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(14)	213	203	203	-	93.9	-	-	-	-	31	675	(14)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(12)	204	194	194	-	92.3	-	-	-	-	29	650	(12)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(10)	196	187	187	-	90.7	-	-	-	-	28	620	(10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		188	1/9	1/9		89.5		-			2/	600	(8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(6)	180	1/1	1/1		0/.1 85 5		_			20	580	(6)
(2) 100 100 100 - 00.0 - 00.0 24 0.00 (2)	(2)	1/3	159	158		83.5	_			_	20	530	(4)
		160	152	152	_	81.7	_	_	_	_	24	515	(0)

*1: 1Mpa=1N/mm²
*2: In above table, numbers in parenthesis are only for reference. This table is abstracted from SAE J 417.

Explanation of icons

Class E High Speed Steel

High Speed Steel Oxidizing

Class E High Speed Steel Oxidizing

Class E High Speed Steel Nitriding/Oxidizing

Class E High Speed Steel Nitriding

Class E High Speed Steel Coated

Cobalt High Speed Steel

Cobalt High Speed Steel Coated

Powder High Speed Steel Nitriding

Powder High Speed Steel Coated

Powder High Speed Steel Oxidizing

Powder High Speed Steel Nitriding / Oxidizing

Ultra-fine micro grain cemented carbide

Ultra-fine micro grain cemented carbide Coated

For blind hole with through coolant hole

For through hole with radial coolant hole

For synchronized feeding

For blind hole >2xD

CUTTING TAPS APPLICATIONS

ISO P	p. 8	<u>p. 12</u>
ISO M	p. 16	<u>p. 18</u>
ISO K	p. 20	<u>p. 22</u>
ISO N	p. 24	<u>p. 26</u>
ISO S	p. 28	p. 30
ISO H	p. 32	p. 32

ISO P Steel

					GENERAL PURPOSE	I				UNIV	ERSAL			ISO P
NEW CODE OLD CODE	HT 9□20	LO-SP 9⊡41	LO-SP 9□41OX	SP 9□40	SP 9□40OX	SP 9□40TI	SP-BLF 9□47	SP-BLF 9□47OX	SP-BLF 9□47TI	AU+SP 9⊡86TI	AUXSP 9¤86TI			ISO M
	HSSE	HSSE	HSSE OX	HSSE	HSSE OX	HSSE Coating	HSSE >2xD	HSSE OX >2xD	HSSE Coating >2xD	HSSE Coating	HSSE Coating Synchro Nized		CUTTING TAPS	ISO N ISO K
	T DE CONTRACTO DE									5557	5557			ISO H USI
		Please refet	r to Yamawa	general cat	alogue pag	e 🕞 fora	complete v	iew on sizes	tolerances	and chamfe	ers available		FORMING TAPS	ISO N ISO P - ISO M
м	M2~48	M2~30	M2~30	M2~48	M2~48	M2~24	M3~39 83	M3~39	M3~24	M3~20	M6~12			Z
MF	MF3~48	MF8~24	MF5~30	MF7~48	MF4~48	MF8~22				MF8~20	MF8~12		INICAL	MATIO
UNC/UNF	No. 4~1.3/4			No. 4~1.3/4	No. 4~1.3/4								TEC	INFOR
G/Rp	1/16~1.1/2 143 576	1/8~1 71	1/8~1 74	1/16~1.1/2 56 579	1/16~1.1/2 63	1/8-1/2 58								
BSW				1/8~1.3/4 326	3/16~1 335									
NPT/NPTF	1/16~2 305308			1/16~1 594										
Rc	1/16~4 551			1/16~2 558										
NPS/NPSF	1/8~1 310 311													
PG	7~36													

Part 1 - General purpose and universal

9

ISO P Steel

				SPE PURI	CIAL POSE					HIGH SPEED				ISO P
NEW CODE OLD CODE	E-SP 9□46OX	SP-VA 9□45OX	SP-VA 9□45TC	SP+VA 9⊡85OX	SU2-SP 9□44OX	ZEN-B 1¤40OX	PH-SP 9□48OX	EH-HT 2□20	F-SP	HFISP	HFIHS			ISO M
	HSSE OX	HSSE OX	HSSE Coating	HSSE OX	HSSE OX Synchro nized	HSS-P OX Synchro nized	HSSE OX	HSS-Co	HSSE Coating Synchro nized	HSS-Co Coating Synchro nized	HSS-Co Coating Synchro Nized		CUTTING TAPS	ISO N ISO K
													-	ISO H ISO S
		ġ							HSE	A lease			FORMING TAPS	SO N ISO P - ISO M
	M2 04	Please refer	to Yamawa	general cat	alogue pag	e 🕞 for a	complete vi	ew on sizes	, tolerances	and chamfe	ers available			
М	77	1VIZ~30	82	78	87	89	75	145	93	95	94		-	NO
MF	MF10~24	MF8~24			MF10~24	MF8~16	MF8~30	MF8~16	MF10~12	MF10~20	MF10~20		HNICA	RMATI
UNC/UNF		No. 4~2				No. 4~1		No. 4~3/4	No. 4~3/4				TEC	INFO
G/Rp		1/8~3/4 81			1/8~3/4 87		1/8~1/2 76	1/8~1/2				L		
BSW		3/16~1 354												
NPT/NPTF		1/16~1 302303						1/8~3/4						
Rc														
NPS/NPSF														
PG														

Part 2 - Special purpose and high speed

□ indicates the missing number to complete the old code as follows: 3=DIN371 UN 4=DIN374/376 UN 6=DIN371 M 7=DIN376 M 8=DIN374 MF 9=DIN5156 G

11

ISO P Steel

ISO P **GENERAL** UNIVERSAL PURPOSE **NEW CODE** HT PO PO PO AU+SL AUXSL ISO M OLD CODE 9□20 9□30 9=30OX 9=30TI 9=66TI 9=66TI HSSE OX HSSE Coating HSSE HSSE HSSE HSSE Coating Coating ISO K **CUTTING TAPS** \mathbf{O} ISO N ISO S ISO H ISO P - ISO M FORMING TAPS Z ISO Please refer to Yamawa general catalogue page 🥃 for a complete view on sizes, tolerances and chamfers available M2~48 M1.4~48 M2~48 M2~24 M3~12 M6~12 М TECHNICAL INFORMATION 122 135 115 117 107 108 MF3~48 MF4~48 MF4~48 MF8~20 MF8~12 MF8~12 MF 115 135 117 107 108 122 No. 4~1.3/4 No. 4~1.3/4 No. 4~1.3/4 UNC/UNF 141 117 124 1/16~1.1/2 1/16~1.1/2 1/16~1.1/2 1/8~1/2 G/Rp 143 576 118 401 125 118 1/8~1.1/2 BSW 401 1/16~2 NPT/NPTF 305 308 1/16~4 Rc 551 1/8~1 NPS/NPSF 310 311 7~36 PG 143

ISO P Steel

			SPE(PURI	CIAL POSE			HIGH PERFOR- MANCE	HI SPI	GH EED						ISO P
NEW CODE OLD CODE	PO-VA 9□35OX	PO-VA 9□35TC	SL+VA 9□65OX	ZEN-P 1¤30NX	EH-PO 2□30	EH-HT 2□20	MHSL	F-SL	HDISL						ISO M
	HSSE OX	HSSE Coating	HSSE OX	HSS-P NX Synchro nized	HSS-Co	HSS-Co	HSS-Co Coating Synchro nized	HSSE Coating Synchro nized	HSS-Co Coating Synchro nized					CUTTING TAPS	ISO N ISO K
	DUDUADUADUA			DUNUNUM			Sound Street Str	THE REAL PROPERTY OF	In the second seco						ISO S
					╂	╉									ISO H
			THE					novr mma Boot	· · · · · · · · · · · · · · · · · · ·					MING TAPS	ISO P - ISO M
	U	Please refer	to Yamawa	general cat	alogue pag	e 🖵 for a	complete v	iew on sizes	, tolerances	and chamf	ers availabl	e		FORI	ISO N
м	M2~36	M2~20	M3~12	M3~24	M3~24	M3~24	M6~12	M3~12	M6~20				-		z
MF	MF8~24			MF10~16	MF8~20	MF8~16	MF10~16	MF10~12	MF10~20					INICAL	MATIO
UNC/UNF	No. 4~2			No. 6~1		No. 4~3/4		No. 4~3/4						TECH	INFOR
G/Rp						1/8~1/2							L		
BSW	3/16~3/4 417														
NPT/NPTF						1/8~3/4 304									
Rc															
NPS/NPSF															
PG															

Part 2 - Special purpose, high performance and high speed

	UNIV	ERSAL			SPECIAL PURPOSE	E								ISO P
NEW CODE OLD CODE	AU+SP 9⊡86TI	AUXSP 9□86TI	SP-VA 9□45OX	SP-VA 9□45TC	SP+VA 9□85OX	SU2-SP 9□44OX	ZEN-B 1¤40OX							ISO M
	HSSE Coating	HSSE Coating Synchro Nized	HSSE OX	HSSE Coating	HSSE OX	HSSE OX Synchro Nized	HSS-P OX Synchro Nized						CHITTING TAPS	ISON ISOK
	5550	6660												ISO S
														M ISO H
														ISO P - ISO
	U	Please refe	r to Yamawa	general cat	talogue pag	e 🕞 for a	complete v	iew on sizes	s, tolerances	and chamfe	ers available	2	FORM	ISO N
м	M3~20	M6~12	M2~36	M3~20 82	M3~12	M3~24	M3~24							z
MF	MF8~20	MF8~12	MF8~24			MF10~24	MF8~16							INICAL
UNC/UNF			No. 4~2				No. 4~1						1.1.1	INFOR
G			1/8~3/4 81			1/8~3/4 87								
BSW			3/16~1 354											
NPT/NPTF			1/16~1 302303											
STI (EG) UNC/UNF							No. 2~1/2							

	UNIV	ERSAL		SPE PUR	CIAL POSE									ISO P
NEW CODE OLD CODE	AU+SL 9⊡66TI	AUXSL 9⊡66TI	PO-VA 9□35OX	PO-VA 9□35TC	SL+VA 9□65OX	ZEN-P 1□30NX								ISO M
	HSSE Coating	HSSE Coating	HSSE OX	HSSE Coating	HSSE OX	HSS-P NX							ľ	
		Synchro O nized				Synchro O nized							G TAPS	ISO K
													CUTTIN	ISON
	TITUTION IN COLOR	TITUTE IN COLOR	PROPAGATA ALL CONTRACTOR	AMAMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		ANNUMBER OF STREET								ISO S
														ISO H
	((NG TAPS	ISO P - ISO M
	NESS G	Please refe	r to Yamawa	general cat		e 🖵 for a	complete v	iew on sizes	s. tolerances	and chamf	ers available		FORMI	ISO N
Μ	M3~12	M6~12	M2~36	M2~20	M3~12	M3~24						-		NO
MF	MF8~12	MF8~12	MF8~24			MF10~16							CHNICA	RMAIL
UNC/UNF			No. 4~2			No. 6~1							TEC	INFC
BSW			3/16~3/4 417											
NPT/NPTF														
STI (EG) UNC/UNF						No. 2~1/2								

19

ISO K Cast iron

			SPECIAL PURPOSE	1		HI SPI	GH EED							ISO P
NEW CODE OLD CODE	GG-HT 9⊡26NI	GG-HT 9⊡26TC	GG-HT-OH 9⊡26NIOH	GG-HT-OH 9⊡26TCOH	CT-FC 3□26	HFISP	HFICT-B							ISO M
	HSSE NI	HSSE Coating	HSSE NI	HSSE Coating	HF	HSS-Co Coating Synchro Nized	HF Coating Synchro Nized						UTTING TAPS	ISOK
													D	ISON
														ISO S
														I SO H
	Į	ļ					•						NG TAPS	ISO P - ISO M
				U									FORMI	ISO N
M	M3~24	M3~24	M6~20	M6~20	M3~16	e for a M6~20	M6~12 493	lew on sizes	s, tolerances	and champ	ers available			z
MF	MF8~24	MF8~24	MF8~22	MF8~22	MF8~16	MF10~20	MF10~12 493						HNICAL	RMATIO
UNC/UNF	1/4~3/4 264				No. 10~5/8								E	INFO
G/Rp	1/8~1 148	1/8~1/2 150			1/8~1 590 581									
NPT/NPTF	1/8~2 307 309				4/6 4									
Rc	1/16~2 571				1/8~1 573									

ISO K Cast iron

		SPECIAL PURPOSE	1	HI SPI	GH EED								ISO P
NEW CODE OLD CODE	GG-HT 9□26NI	GG-HT 9□26TC	CT-FC 3□26	HDISL	HFICT-P								ISO M
	HSSE NI	HSSE Coating	HF	HSS-Co Coating	HF Coating Synchro Nized							NG TAPS	ISO K
												CUTTI	ISO N
				THE REAL PROPERTY IN CASE OF THE REAL PROPERTY INFORMATION OF THE REAL PROPERTY INTERNAL	.							1	ISO S
													H OSI
	ļ				•							NGTAPS	ISO P - ISO M
		Please refer	r to Yamawa	general cat	alogue pag	e 🖵 for a	complete v	iew on sizes	s, tolerances	and chamfe	ers available	FORMI	ISO N
м	M3~24	M3~24	M3~16	M6~20	M6~12								N
MF	MF8~24	MF8~24	MF8~16	MF10~20	MF10~12 492							HNICAL	RMATIC
UNC/UNF	1/4~3/4 264		No. 10~5/8									TEC	INFO
G/Rp	1/8~1 148	1/8~1/2 150	1/8~1 590 581										
NPT/NPTF	1/8~2 307 309												
Rc	1/16~2 571		1/8~1 573										

	UNIV	ERSAL	SPE PUR	CIAL POSE	HI PERFOF	GH RMANCE		HIGH SPEED						ISO P
NEW CODE OLD CODE	AU+SP 9□86TI	AUXSP 9□86TI	AL+SP 9□43NI	AL-SP 9¤43NI	AXE-HT	MC-AD-CT	HFASP	HFAHS	HFACT-B					ISO M
	HSSE Coating	HSSE Coating	HSSE NI	HSSE NI	HSS-P Coating	HF Coating	HSS-Co Coating	HSS-Co Coating	HF Coating				ING TAPS	ISOK
													CUTT	ISO N
	5550	5550			annannannan annannannan				A					ISO S
				Ĩ										I SO H
								10 10	• • • • •				ING TAPS	ISO P - ISO M
		Please refe	r to Yamawa	general cat	alogue pag	e 🖵 for a	complete v	iew on sizes	s, tolerances	and chamfe	ers available	2	FORM	ISO N
м	M3~20	M6~12	M2~6	M8~16	M6~12	M6~12 487	M6~12 97	M6~12	M6~12 491					Z
MF	MF8~20	MF8~12		MF10~16	MF8~12	MF10~12 487	MF10~12	MF10~12	MF10~12				CHNICAL	ORMATIC
UNC/UNF				No. 2~1/2									TE	INFC
STI (EG) M				3~24 367										

	UNIVERSAL SPECIA PURPO		SPECIAL PURPOSE	L HIGH E SPEED											ISO P
NEW CODE OLD CODE	AU+SL 9⊡66TI	AUXSL 9⊡66TI	LA-HT 9□23NI	HDISL	HFACT-P										ISO M
	HSSE Coating	HSSE Coating	HSSE NI	HSS-Co Coating	HF Coating Synchro O nized									NGTAPS	ISOK
														COLL	ISO N
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		CARACTER CONTRACTOR											ISO S
				• • • • •											ISO H
														VG TAPS	ISO P - ISO M
	KERSI GI					o 🗔 for o	complete v		telerances	and chamf				FORMIT	ISO N
м	M3~12	M6~12	M3~16	M6~20	M6~12 490_		complete v	IEW OIT SIZES	, tolerances						
MF	MF8~12	MF8~12	MF8~24	MF10~20	MF10~12									INICAL	MATIO
STI (EG) M			2.6~24											TECH	INFOR
STI (EG) UNC/UNF			No. 4~3/4												

	SPECIAL PURPOSE														ISO P
NEW CODE OLD CODE	ZEN-B 1□40OX	ZET-B 1¤41NI													ISO M
	HSS-P OX Synchro nized	HSS-P NI Synchro nized												VG TAPS	ISOK
														CUTTII	ISO N
															ISO S
		ľ.													ISO H
		ZET-0												NGTAPS	150 P - 150 M
		Please refer	r to Yamawa	general ca	talogue pao	e 🔽 for a	complete v	iew on sizes	, tolerances	and chamfe	ers available			FORMI	ISO N
м	M3~24	M3~24 91											_		N
MF	MF8~16	MF8~16												HNICAL	RMAIIC
UNC/UNF	No. 4~1	No. 4~3/4												TEC	
STI (EG) UNC/UNF	No. 2~1/2														

	SPE PURI	CIAL POSE											ISO P	
NEW CODE OLD CODE	ZEN-P 1□30NX	ZET-P 1¤49NI											ISO M	
	HSS-P NX	HSS-P NI Synchro nized											ISOK	
													ISO N	
	PROMODIA A A A A A A A A A A A A A A A A A A	TILI STATES											ISO S	
													H OSI	
													ISO P - ISO M	
	U	Please refer	to Vamawa	ceneral cat		e 🗔 for a	complete v	iew on sizes	tolerances	and chamfe	arc available		ISO N	
м	M3~24	M3~16		general ca									 ~	
MF	MF10~16	MF8~16												
UNC/UNF	No. 6~1	No. 2~3/4											INFOR	
STI (EG) UNC/UNF	No. 2~1/2													

32 Think threads with

	SPE PUR	CIAL POSE													ISO P
NEW CODE OLD CODE	EH-CT	UH-CT													ISO M
	HF Coating	HF Coating												-	
	Synchro O nized	Synchro O nized												ING TAPS	ISO
														CUIT	ISO N
														9	150 5
															ISO H
														NG TAPS	ISO P - ISO M
		Please refer	to Yamawa	general ca	talogue pag	e 🖵 for a	complete v	iew on sizes	s, tolerances	and chamfe	ers available			FORMI	150 N
м	M3~12	M3~20											_	2	z
MF		MF10~20												CHNICAL	JKIMA II O
	Indicates the missing number to complete the old code as follows: DIN371 UN 4-DIN374/376 UN 6-DIN371 M 7-DIN376 M 8-DIN374 ME 9-DIN5156 G													ΞΨ.	7 INI

3=DIN371 UN 4=DIN374/376 UN 6=DIN371 M 7=DIN376 M 8=DIN374 MF 9=DIN5156 G

FORMING TAPS APPLICATIONS

Introduction to Thread Forming Taps	p. 36
ISO P and ISO M	p. 38
ISO N	p. 40
Introduction to Thread Forming Taps (Roll Taps)

Thread Forming Taps are the tools used for producing internal threads by a thread forming process. Currently, Yamawa's Thread Forming Taps have a good reputation by being used in many areas. They are widely used along with the diversity of workpieces and with the change into miniaturization of workpieces. Followings are the characteristics and features of Thread Forming Taps (Roll Taps) which are not available with cutting taps.

- Features of Roll Taps
- O Tapping without producing chips. They are suitable for blind hole tapping. In producing internal threads with no chips, they save you a time for chip disposal.
- O Roll taps are stronger than cutting taps due to their design. The effect of fluteless design gives a large cross-section area to the tap, and there is no worry of chip jamming, which makes Roll taps very tough against breakage.
- O Roll taps produce excellent pitch diameter well within pitch diameter tolerances. Material deformation process produces the internal threads with good surface finish as well as precise pitch diameter.
- High efficiency and tool life. The configuration of the lobes at the crests of the tap threads makes high speed tapping possible and extends tool life compared with cutting type taps. The addition of a supplemental tap surface treatment, such as Oxidizing, Nitriding, TiN, and TiCN can extend tool life 2 to 20 times over an uncoated (bright) tap performance.

Points to note during a Roll tapping operation

- O Tapping torque is 2 to 3 times larger than that of cutting type taps.
- O Roll tapping is only applicable to materials producing stringy chips.
- The deviation of hole size before tapping should be about 5% of pitch. The control of hole size before tapping should be more severe than that of cutting type taps.
- O The selection of lubricants is important to prevent sticking or welding.
- O Burrs at the face of an internal thread are larger than those produced by cutting type taps. In some cases it is necessary to take additional countersink processing at the top of hole.
- O In the minor diameter of internal thread, U-shape form (Tine form) at the hole entrance can be seen. U-shape form is never seen when using cutting type taps.

Selection of Yamawa Roll Taps

- O Types of Roll Taps. Yamawa produces various types of Roll Taps which include General purpose taps, Special purpose taps for non-ferrous and steel, as well as special purpose taps with surface treatment for the specified applications. To provide for longer tool life, specially developed premium materials are also used together with physical vapor deposition coating (PVD) such as TiN and TiCN. In particular, OL-RZ is superior product developed for dry machining with regards to tapping environment and performance.
- O Tap Materials. Yamawa's standard tap material is SKH58 designed for improving torque, superior anti-friction properties as well as toughness. To extend tool life, we use SKH56, or SKH10(Powder HSS) which is the best tap material for antifriction.
- Tolerance Class. Using the datum 12.7µm in a step form, in accordance with ANSI standard GH class, we made up Yamawa's G class system. The differences in materials being Roll tapped, as well as hole size, contribute to differences in thread forming.
 Yamawa offers 2 to 3 oversized tap tolerance classes in order to achieve the most suitable internal thread pitch diameter size.
- Chamfer length. Chamfer lengths: 2 pitches for blind hole use and 4 pitches for through hole use. Basically 4 pitches have longer tool life than 2 pitches because force applied on one blade at 4 pitch chamfer is smaller than that at 2 pitch chamfer. However, it is difficult to say about tool life in a few words because each different tapping condition influences the tool life.

Shape of internal threads and the ratio of thread engagement affected by bored hole diameter

Compared with the basic height of thread engagement, the actual height of the thread engagement is called "thread engagement ratio" in percentage.

Depending on the bored hole diameter, internal threads and thread engagement ratio will change.

In tapping, the tapping condition must be chosen by referring to the thread engagement ratio.

The portion of material to be formed can be reduced by selecting the largest possible bored hole diameter. In this way the load on taps is reduced, decreasing tap's wear and damage.

ISO P

ISO P Steel **– ISO M** Stainless steel

100			Low			Tappin	g speed			High			10
Identifi-			5m	/min	10 m/mi	'n	15m/min	20m/min	25m/min	30m/min			Identifi-
numbers	Mat	terials	VC(m/min)					rea of full rigid lead feed			Mater	ials	numbers
M3	eels	1.4401 AISI316		· · ·							1.4401 AISI316	eels	M3
M2	lless ste	1.4350 AISI304		· · ·				UL+R HP+R	z		1.4350 AISI304	less sto	M2
M1	Stair	1.4305 AISI303						HP-RZ	-		1.4305 AISI303	Stair	M1
Р5	Tool steel	X 40 CrMoV 5 1									X 40 CrMoV 5 1	Tool steel	P5
P4	High alloy steel	C 105 W2							мні	RZ	C 105 W2	High alloy steel	P4
P3	Alloy steels	25 CrMo 4									25 CrMo 4	Alloy steels	P3
P2	Medium and high carbon steels	C45 む C30		N+RZ N-RZ							C45 \$} C30	Medium and high carbon steels	P2
P1	Free cutting and structural steel	C25 1) St44-2		R-D	R	-D(Coati	ng)		OL+ HP+ HP	RZ RZ RZ	C25 1) St44-2	Free cutting and structural steel	P1
			VC(m/min)		:								
			5m	/min	10 m/mi	n .	15m/min	20m/min	25m/min	30m/min			

An image telling possible applications

	GEN PUR	ERAL POSE	SPE PUR	CIAL POSE		HI PERFOR	GH RMANCE						ISO P
NEW CODE OLD CODE	R-D 9353	R-D 9353TI	N+RZ 9351OX	N-RZ 9351OX	OL+RZ 1355TC	HP+RZ 1356TC	HP-RZ 1¤56TC	MHRZ					ISO M
	HSSE	HSSE Coating	HSSE OX	HSSE OX	HSS-P Coating	HSS-P Coating	HSS-P Coating	HSS-Co Coating				SUTADS	ISOK
													ISON
													ISO S
		Π											H ISO H
			1.02	1.000	Ļ			Saint Land				NING TAPS	ISO P - ISO
		Please refe	r to Yamawa	a general cat	talogue pag	e 🖵 for a	complete v	iew on sizes	, tolerances	and chamfe	ers available	EO	ISO N
м	M2~16	M2~16	M2~6	M8~16	M3~6	M2~6	M8~16	M6~10					NO
MF				MF2~20			MF10~16	MF10~14					CHNICA
UNC/UNF				No. 0~1/2	No. 2~1/4		No. 0~1/2						INFC
G	1/8~3/8 166	1/8~3/8 166											

□ indicates the missing number to complete the old code as follows: 3=DIN371/376 M 8=DIN374 MF

An image telling possible applications

	GENERAL PURPOSE	SPE PUR	CIAL POSE	HI PERFOF	GH RMANCE									ISO P
NEW CODE OLD CODE	R-D 9353TI	N+RS 9350NI	N-RS 9350NI	HP+RZ 1356TC	HP-RZ 1¤56TC									ISO M
	HSSE Coating	HSSE NI	HSSE NI	HSS-P Coating	HSS-P Coating								IG TAPS	ISOK
													CUTTIN	ISO N
														150.5
	Π	T	Т											ISO H
													IING TAPS	150 P - 150 M
	U												FORM	SO N
Μ	M2~16	Please refe	r to Yamawa M8~12	general cat	alogue pag M8~16	e 🖵 for a	complete v	riew on sizes	s, tolerances	and chamfe	ers available			
ME	166	169	169 MF2~20	172	172 MF10~16								ICAL	AIIUN
UNC/UNF			503 No. 0~1/2		173 No. 0~1/2								TECHN	NLCRW
G	1/8~3/8 166_		201		292								-	-
STI (EG) M			3~12											

□ indicates the missing number to complete the old code as follows: 3=DIN371/376 M 8=DIN374 MF

TECHNICAL INFORMATION

<u>1.</u>	Terminology of Taps	p. 44
<u>2.</u>	Flutes	p. 45
3.	Edge angle and Cutting allowance of taps	p. 46
4.	Recommended Tapping Speeds	p. 47
5.	Bored hole size before tapping (for thread cutting)	p. 48
6.	Bored hole size before tapping (for thread forming)	p. 57
<u>7.</u>	Materials used for Cutting Tools	p. 59
<u>8.</u>	Surface Treatment	p. 61
<u>9.</u>	Carbide Taps	p. 64
10.	Selecting different tap holder combinations by machine feed system	p. 66
11.	The mechanism for a tap to cut oversize on an internal thread	p. 68
12.	Symbols for Standard Threads	p. 70

1. Terminology of Taps

Chamfer relief

Thread relief and cutting angle

Edge angle, including chamfer relief, thread relief, cutting angle and others, as well as heat treatment, have important functions affecting workpiece shape, tool life, surface finish of internal screw thread, and so on.

Chamfer of straight flute taps

Serial taps come in sets of three or two to complete screw threads by cutting work materials in incremental steps. The first tap (V) and the second tap (M) cut screw threads under size.

Then, the third tap (F) completes the screw threads.

In general, tap chamfer is the most important part of taps to create internal thread. The function of full thread part of taps is to make a guidance.

2. Flutes

Major functions of flutes are:

1) Chips' pocket, 2) lubricant supply route, 3) rake angle formation, 4) to determine cutting amount in relation to the number of chamfer threads. And all are very important. Taps' flutes are classified into following groups by tapping methods, fluting method, tapping direction, and hand of screw thread.

Type of Flute

In general, the number of flutes for cutting type taps are usually increased as O.D. becomes larger. However, it is also influenced by tap's strength and rigidity, the accomodation of chip, the amount of cutting, and lubricant supply system.

ISO P

ISO M

ISO K

ISO N

ISO S

ISO H

ISO P - ISO M

Z

ISO

TECHNICAL INFORMATION

FORMING TAPS

CUTTING TAPS

3. Edge angle and cutting allowance of taps

Thread relief

S: Indicator drop for thread relief

The amount of cut portion

Please refer to the pictures shown. In such taps as have 4 flutes and 3 thread chamfer, the cutting operation progresses in order from the edge of A1, B1, C1, D1...A2, B2... A4. Tap end is usually smaller than the size of bored hole, and A1 may not make any cutting operation.

4. Recommended Tapping Speeds

Tapping Speeds

Following usage conditions affect tapping speeds: kind of taps, workpieces, number of chamfered threads, materials, hole condition and fluid. It is necessary to select the suitable tapping speed by paying attention to these conditions.

When work material has excellent workability, when there is a little depth of tapping, or when tapping fluid can be sufficient, select rather higher tapping speed. When workability of work material is unknown, to be safe, try nearly the lowest tapping speed at first, and then increase the speed gradually.

• Following speed is basically for the cutting condition under the use of insoluble cutting oil. Under the use of water soluble cutting oil, please choose 30% slower speed.

						unit: m/min
				Tapping Speed		
Workpiece	e Materials	Spiral Fluted	Spiral Pointed	Roll Taps	Straight Fluted	Cemented Carbide
Low Carbon Steels	SS400 S10C~S25C	8~15	10~20	8~15	6~10	_
Medium Carbon Steels	S25C~S45C	6~12	8~14	7~12	5~9	_
High Carbon Steels	S45C~S58C	5~10	8~12	5~10	5~8	—
Alloy Steels	SCM · SNCM	5~10	7~10	5~10	5~8	_
Thermal refined steels	20~45HRC	3~5	4~7	—	3~6	_
Stainless Steels	SUS	3~8	4~9	6~15	3~7	_
Tool Steels	SKD	5~8	6~10	—	5~9	_
Cast Steels	SC	6~10	8~13	—	6~10	_
Cast Irons	FC	_		—	12~17	15~25
Ductile Cast Irons	FCD	5~10	5~10	—	5~8	12~20
Coppers	Cu	8~12	8~13	25~35	7~11	15~33
Brass · Brass Casting	Bs · BsC	11~22	13~25	25~35	10~20	23~33
Phosphor Bronze · Phosphor Bronze Casting	PB · PBC	8~15	10~18	25~35	8~15	18~33
Wrought Aluminum	AI	15~25	20~25	25~35	15~20	23~40
Aluminum Alloy Castings	AC · ADC	11~22	12~24	15~25	10~20	15~25
Magnesium Alloy Castings	MC	7~15	10~20	—	7~15	12~20
Zinc Alloy Diecastings	ZDC	7~15	10~20	15~25	7~15	12~20
Thermosetting Plastic	Bakelite (Phenol-PF)	11~17	12~18	_	10~15	15~25
Thermoplastic resin	PVC, Nylon	11~17	12~18	_	10~15	15~25
Titanium Alloys	Ti-6AI-4V etc	6~9	6~9			
Nickel Base Alloys	Hastelloy, Inconel, Waspaloy	3~6	3~6	_	_	

Formulas

Tapping Speed (Vc)

$$Vc = \frac{\pi \cdot Dc \cdot n}{1000} (m/min)$$
n : Revolution of tap (min⁻¹)
 π : 3.14

 π : 3.14 Dc : Nominal dia. of tap (mm)

$$n = \frac{1000 \cdot Vc}{\pi \cdot Dc} (min^{-1})$$

Vc : Tapping Speed (m/min) Dc : Nominal dia. of tap (mm) π : 3.14

ISO P

5. Bored hole size before tapping (for thread cutting)

for Metric Threads

							unit: mm
Size	Minor diameter of i	nternal threads (D ₁)	Bored hole size	Size	Minor diameter of	internal threads (D ₁)	Bored hole size
	Max.	Min.	(rei.)		Max.	Min.	(rei.)
M1 ×0.25	(0.785)	(0.729)	0.77	M7 ×0.75	6.378	6.188	6.33
M1 ×0.2	(0.821)	(0.783)	0.81	* M7 ×0.5	6.599	6.459	6.56
M1.1×0.25	(0.885)	(0.829)	0.87	M8 ×1.25	6.912	6.647	6.85
M1.1×0.2	(0.921)	(0.883)	0.91	M8 ×1	7.153	6.917	7.09
M1.2×0.25	(0.985)	(0.929)	0.97	M 8×0.75	7.378	7.188	7.33
M1.2×0.2	(1.021)	(0.983)	1.01	*M 8×0.5	7.599	7.459	7.56
M1.4×0.3	(1.142)	(1.075)	1.13	M 9×1.25	7.912	7.647	7.85
M1.4×0.2	(1.221)	(1.183)	1.21	M 9×1	8.153	7.917	8.09
M1.6×0.35	1.321	1.221	1.30	M 9×0.75	8.378	8.188	8.33
M1.6×0.2	(1.421)	(1.383)	1.41	M10×1.5	8.676	8.376	8.60
* M1.7×0.35	1.421	1.321	1.40	M10×1.25	8.912	8.647	8.85
*M1.7×0.2	1.521	1.483	1.51	M10×1	9.153	8.917	9.09
M1.8×0.35	1.521	1.421	1.50	M10×0.75	9.378	9.188	9.33
M1.8×0.2	(1.621)	(1.583)	1.61	* M10×0.5	9.599	9.459	9.56
M2 ×0.4	1.679	1.567	1.65	M11×1.5	9.676	9.376	9.60
M2 ×0.25	(1.785)	(1.729)	1.77	M11×1	10.153	9.917	10.10
M2.2×0.45	1.838	1.713	1.81	M11×0.75	10.378	10.188	10.33
M2.2×0.25	(1.985)	(1.929)	1.97	* M11×0.5	10.599	10.459	10.56
*M2.3×0.4	1.979	1.867	1.95	M12×1.75	10.441	10.106	10.4
*M2.3×0.25	2.085	2.029	2.07	M12×1.5	10.676	10.376	10.6
M2.5×0.45	2.138	2.013	2.11	M12×1.25	10.912	10.647	10.85
M2.5×0.35	2.221	2.121	2.20	M12×1	11.153	10.917	11.09
*M2.6×0.45	2.238	2.113	2.21	* M12×0.5	11.599	11.459	11.56
*M2.6×0.35	2.321	2.221	2. 3 0	M14×2	12.210	11.835	12.1
M3 ×0.5	2.599	2.459	2.56	M14×1.5	12.676	12.376	12.6
M3 ×0.35	2.721	2.621	2.70	M14×1	13.153	12.917	13.09
M3.5×0.6	3.010	2.850	2.97	M15×1.5	13.676	13.376	13.60
M3.5×0.35	3.221	3.121	3.20	M15×1	14.153	13.917	14.09
M4 ×0.7	3.422	3.242	3.38	M16×2	14.210	13.835	14.1
M4 ×0.5	3.599	3.459	3.56	M16×1.5	14.676	14.376	14.6
M4.5×0.75	3.878	3.688	3.83	M16×1	15.153	14.917	15.09
M4.5×0.5	4.099	3.959	4.06	M17×1.5	15.676	15.376	15.60
M5 ×0.8	4.334	4.134	4.28	M17×1	16.153	15.917	16.09
M5 ×0.5	4.599	4.459	4.56	M18×2.5	15.744	15.294	15.6
M5.5×0.5	5.099	4.959	5.06	M18×2	16.210	15.835	16.1
M6 ×1	5.153	4.917	5.09	M18×1.5	16.676	16.376	16.6
M6 ×0.75	5.378	5.188	5.33	M18×1	17.153	16.917	17.09
*M6 ×0.5	5.599	5.459	5.56	M20×2.5	17.744	17.294	17.6
M7 ×1	6.153	5.917	6.09			1	

The recommended tap drill sizes indicated above are for 6H Metric Threads. • D_i : Minor diameter of 6H internal thread. The Minor diameters D_i shown in () are of 5H for coarse threads and of 4H • 5H for fine threads.

							unit: mm			<u>s</u>
Size	Minor diameter of i Max.	internal threads (D ₁) Min.	Bored hole size (ref.)	Size	Minor diameter of Max.	internal threads (D ₁) Min.	Bored hole size (ref.)			
M20×2	18.210	17.835	18.1	M38×1.5	36.676	36.376	36.6			
M20×1.5	18.676	18.376	18.6	M39×4	35.270	34.670	35.1			N
M20×1	19.153	18.917	19.09	M39×3	36.252	35.752	36.1			S
M22×2.5	19.744	19.294	19.6	M39×2	37.210	36.835	37.1			
M22×2	20.210	19.835	20.1	M39×1.5	37.676	37.376	37.6			
M22×1.5	20.676	20.376	20.6	M40×3	37.252	36.752	37.1			XO
M22×1	21.153	20.917	21.09	M40×2	38.210	37.835	38.1		APS	S
M24×3	21.252	20.752	21.1	M40×1.5	38.676	38.376	38.6		פֿן	
M24×2	22.210	21.835	22.1	M42×4.5	37.799	37.129	37.6		Ē	
M24×1.5	22.676	22.376	22.6	M42×4	38.270	37.670	38.1		5	Z
M24×1	23.153	22.917	23.09	M42×3	39.252	38.752	39.1			IS
M25×2	23.210	22.835	23.1	M42×2	40.210	39.835	40.1			
M25×1.5	23.676	23.376	23.6	M42×1.5	40.676	40.376	40.6			
M25×1	24.153	23.917	24.09	M45×4.5	40.799	40.129	40.6			SO
M26×1.5	24.676	24.376	24.6	M45×4	41.270	40.670	41.1			Ň
M27×3	24.252	23.752	24.1	M45×3	42.252	41.752	42.1			
M27×2	25.210	24.835	25.1	M45×2	43.210	42.835	43.1			
M27×1.5	25.676	25.376	25.6	M45×1.5	43.676	43.376	43.6			H
M27×1	26.153	25.917	26.09	M48×5	43.297	42.587	43.1			ISC
M28×2	26.210	25.835	26.1	M48×4	44.270	43.670	44.1			
M28×1.5	26.676	26.376	26.6	M48×3	45.252	44.752	45.1			Σ
M28×1	27.153	26.917	27.09	M48×2	46.210	45.835	46.1			ISO
M30×3.5	26.771	26.211	26.6	M48×1.5	46.676	46.376	46.6		APS	- d O
M30×3	27.252	26.752	27.1	M50×3	47.252	46.752	47.1		L D	IS
M30×2	28.210	27.835	28.1	M50×2	48.210	47.835	48.1		MIM	
M30×1.5	28.676	28.376	28.6	M50×1.5	48.676	48.376	48.6		FOR	Z
M30×1	29.153	28.917	29.09	M52×5	47.297	46.587	47.1			ISO
M32×2	30.210	29.835	30.1	M52×4	48.270	47.670	48.1			
M32×1.5	30.676	30.376	30.6	M52×3	49.252	48.752	49.1			z
M33×3.5	29.771	29.211	29.6	M52×2	50.210	49.835	50.1	- 1	CAL	ATIO
M33×3	30.252	29.752	30.1	M52×1.5	50.676	50.376	50.6	- 1	INH	RM/
M33×2	31.210	30.835	31.1	M55×4	51.270	50.670	51.1	- 1	TEC	IFO
M33×1.5	31.676	31.376	31.6	M55×3	52.252	51.752	52.1			=
M35×1.5	33.676	33.376	33.6	M55×2	53.210	52.835	53.1			
M36×4	32.270	31.670	32.1	M55×1.5	53.676	53.376	53.6			
M36×3	33.252	32.752	33.1	M56×5.5	50.796	50.046	50.6			
M36×2	34.210	33.835	34.1	M56×4	52.270	51.670	52.1			
M36×1.5	34.676	34.376	34.6	M56×3	53.252	52.752	53.1			
• D ₁ : Minor diameter of 6H inte	rnal thread.			M56×2	54.210	53,835	54.1			

M56×1.5

54.676

54.376

54.6

ISO P

ISO M

ISO K

ISO N

ISO S

for Metric Threads

							unit: mm
Size	Minor diameter of	internal threads (D ₁)	Bored hole size	Size	Minor diameter of	internal threads (D ₁)	Bored hole size
	Max.	Min.	(ref.)		Max.	Min.	(ref.)
M58 × 4	54.270	53.670	54.1	M72×2	70.210	69.835	70.1
M58 × 3	55.252	54.752	55.1	M72 × 1.5	70.676	70.376	70.6
M58 × 2	56.210	55.835	56.1	M75 × 4	71.270	70.670	71.1
M58 × 1.5	56.676	56.376	56.6	M75×3	72.252	71.752	72.1
M60 × 5.5	54.796	54.046	54.6	M75×2	73.210	72.835	73.1
M60 × 4	56.270	55.670	56.1	M75 × 1.5	73.676	73.376	73.6
M60 × 3	57.252	56.752	57.1	M76×6	70.305	69.505	70.1
M60 × 2	58.210	57.835	58.1	M76 × 4	72.270	71.670	72.1
M60 × 1.5	58.676	58.376	58.6	M76 × 3	73.252	72.752	73.1
M62 × 4	58.270	57.670	58.1	M76 × 2	74.210	73.835	74.1
M62 × 3	59.252	58.752	59.1	M76 × 1.5	74.676	74.376	74.6
M62 × 2	60.210	59.835	60.1	M78 × 2	76.210	75.835	76.1
M62 × 1.5	60.676	60.376	60.6	M80 × 6	74.305	73.505	74.1
$M64 \times 6$	58.305	57.505	58.1	M80 × 4	76.270	75.670	76.1
$M64 \times 4$	60.270	59.670	60.1	M80 × 3	77.252	76.752	77.1
M64 × 3	61.252	60.752	61.1	M80 × 2	78.210	77.835	78.1
M64 × 2	62.210	61.835	62.1	M80 × 1.5	78.676	78.376	78.6
M64 × 1.5	62.676	62.376	62.6	M82 × 2	80.210	79.835	80.1
M65 × 4	61.270	60.670	61.1	M85 × 6	79.305	78.505	79.1
M65 × 3	62.252	61.752	62.1	M85 × 4	81.270	80.670	81.1
M65 × 2	63.210	62.835	63.1	M85 × 3	82.252	81.752	82.1
M65 × 1.5	63.676	63.376	63.6	M85 × 2	83.210	82.835	83.1
M68 × 6	62.305	61.505	62.1	M90 × 6	84.305	83.505	84.1
$M68 \times 4$	64.270	63.670	64.1	M90 × 4	86.270	85.670	86.1
M68 × 3	65.252	64.752	65.1	M90 × 3	87.252	86.752	87.1
M68 × 2	66.210	65.835	66.1	M90 × 2	88.210	87.835	88.1
M68 × 1.5	66.676	66.376	66.6	M95 × 6	89.305	88.505	89.1
M70×6	64.305	63.505	64.1	M95 × 4	91.270	90.670	91.1
M70 × 4	66.270	65.670	66.1	M95 × 3	92.252	91.752	92.1
M70 × 3	67.252	66.752	67.1	M95 × 2	93.210	92.835	93.1
M70 × 2	68.210	67.835	68.1	M100 × 6	94.305	93.505	94.1
M70 × 1.5	68.676	68.376	68.6	M100 × 4	96.270	95.670	96.1
M72 × 6	66.305	65.505	66.1	M100 × 3	97.252	96.752	97.1
M72 × 4	68.270	67.670	68.1	M100 × 2	98.210	97.835	98.1
M72 × 3	69.252	68.752	69.1				

• D₁: Minor diameter of 6H internal thread.

for Unified Threads

Num Num <th>for onlined micda</th> <th>5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>unit: mm</th>	for onlined micda	5						unit: mm
Max Mn Utd Max Mn Utd 0.1 - 1.305 1.182 1.27 56 - 1.386 13.385 0.1 - 1.305 1.182 1.27 56 - 1.4681 1.4351 1.469 0.1 - 2.7 560NF 1.871 1.685 1.83 34 - 1.4861 1.4351 1.469 0.2 - 60NF 1.971 1.685 1.87 34 - 100NF 17.679 17.233 1.692 0.3 - 60UNF 2.197 2.055 2.89 - 78 - 100NF 1.767 17.233 1.7489 0.4 - 40UNC 2.897 2.447 2.840 1 - 100NF 22.056 2.1971 2.25 0.4 - 3.062 2.427 2.840 1 - 1.80NC 22.056 2.1971 2.25 1.4480N 2.355	Size	Minor diameter of i	internal threads (D ₁)	Bored hole size	Size	Minor diameter of i	nternal threads (D ₁)	Bored hole size
b. 0 1.305 1.182 1.27 5% - 1UNC 13.868 13.366 13.86 b. 1 - 64UNC 1.582 1.425 1.54 5% - 1UNC 13.868 14.351 14.460 b. 1 - 26UNF 1.672 1.772 1.425 1.83 5% - 24UNEF 14.886 14.732 14.20 b. 2 - 56UNC 1.871 1.895 1.83 3/4 - 10UNC 16.840 16.307 16.7 b. 2 - 56UNC 2.167 2.05 2.15 7/8 - 9UNC 19.761 19.177 19.6 b. 4 - 40UNC 2.385 2.157 2.33 7/8 - 9UNC 19.761 19.177 19.6 b. 5 - 40UNC 2.385 2.271 2.41 7/8 - 200NEF 21.132 20.864 21.065 b. 5 - 40UNF 2.740 2.551 2.69 1 - 8UNF 23.571 23.114 23.57 b. 6 - 20UNF 3.902 3.47 1 - 20UNF 22.541 2.4069 28.2 b. 6 - 20UNF 3.966 3.404 3.55		Max.	Min.	(ref.)		Max.	Min.	(ref.)
b.1 -	No. 0 - 80UNF	1.305	1.182	1.27	⁵ /8 - 11UNC	13.868	13.386	13.8
b.1 -	No. 1 - 64UNC	1.582	1.425	1.54	⁵ /8 - 18UNF	14.681	14.351	14.60
2.2 - SAUNC 1.871 1.695 1.83 3/2 - 10UNC 16.840 16.307 16.7 3.2 - 64UNF 1.912 1.766 1.87 3/4 - 16UNF 17.879 17.323 17.59 3.3 - 48UNC 2.144 1.941 2.09 3/4 - 16UNF 17.957 17.679 17.89 3.4 - 48UNF 2.197 2.025 2.157 2.33 7/8 - 9UNC 19.761 19.177 19.6 5.4 - 40UNC 2.985 2.271 2.41 7/8 - 9UNC 19.761 19.177 19.6 5.5 - 40UNC 2.697 2.447 2.644 1.80NC 22.805 23.114 23.57 5.6 - 30UNC 3.803 3.302 3.474 1.162UNF 24.383 1.14UNS 23.825 23.445 23.7 1.6 - 30UNC 3.663 3.404 3.56 1.170UNC 25.349 24.643 2.66 1.10 - 2UNF 2.808 3.603 3.12 2.171 2.5146 25.64 1.10 - 2UNK 4.565 3.022 2.800 5.33 1.16 3.115 3.3047 3.44	No. 1 - 72UNF	1.612	1.474	1.58	⁵ /8 - 24UNEF	14.986	14.732	14.92
2.2 - 64UNF 1.912 1.756 1.87 3/4 - 16UNF 17.678 17.233 17.59 3.3 - 48UNC 2.146 1.941 2.09 3/4 - 20UNEF 17.97 17.679 17.679 17.89 3.3 - 58UNF 2.197 2.025 2.15 7/8 - 20UNEF 19.761 19.771 19.86 5.4 - 40UNC 2.385 2.157 2.33 7/8 - 20UNEF 21.132 20.854 21.06 5.5 - 40UNC 2.697 2.447 2.64 7/8 - 20UNEF 21.32 20.854 21.06 5.6 - 40UNF 3.022 2.820 2.97 1 - 12UNF 23.825 23.445 23.77 5.6 - 40UNF 3.022 2.820 2.97 1 - 20UNEF 26.740 26.69 26.61 5.6 - 32UNC 3.500 3.302 3.47 11/8 -7UNC 25.349 24.638 25.21 5.10 - 32UNF 4.165 3.963 4.12 11/8 -8UN 25.74 27.731 27.61 27.301 5.12 - 32UNF 4.724 4.496 4.67 11/8 -8UNF 29.826 23.21 28.84 </td <td>No. 2 - 56UNC</td> <td>1.871</td> <td>1.695</td> <td>1.83</td> <td>³/4 - 10UNC</td> <td>16.840</td> <td>16.307</td> <td>16.7</td>	No. 2 - 56UNC	1.871	1.695	1.83	³ /4 - 10UNC	16.840	16.307	16.7
b. 3 - 48UNC 2.148 1.941 2.09 3/4 - 20UNEF 17.957 17.679 17.89 0. 3 - 56UNF 2.197 2.025 2.16 7/4 - 9UNC 19.761 19.177 19.67 0. 4 - 40UNC 2.385 2.157 2.33 7/6 - 9UNC 19.761 19.177 20.65 0. 4 - 40UNC 2.687 2.487 2.64 1.789 20.757 20.70 20.65 0. 5 - 40UNC 2.697 2.487 2.64 2.885 2.112 22.11 2.112 22.511 2.25 0. 6 - 32UNC 3.530 3.302 3.47 1 - 12UNF 23.307 24.699 24.61 0. 8 - 32UNC 3.962 3.683 3.89 11/8 - 7UNC 25.349 24.638 25.2 1.10 - 24UNC 4.597 4.344 4.53 11/8 - 7UNC 25.24 27.813 28.4 1.12 - 24UNC 4.527 4.979 5.19 11/8 - 8UNC 28.52 23.41 28.8 1.12 - 28UNF 5.88	No.2 - 64UNF	1.912	1.756	1.87	³ /4 - 16UNF	17.678	17.323	17.59
2.3 - SBUNF 2.197 2.026 2.15 7/8 - 9UNC 19.761 19.177 19.6 0.4 - 40UNC 2.385 2.157 2.33 7/8 - 14UNF 20.675 20.270 20.6 0.4 - 48UNF 2.488 2.271 2.41 7/8 - 20UNEF 21.132 20.854 21.06 0.5 - 44UNF 2.740 2.551 2.69 1 - 8UNC 22.806 21.971 22.5 0.5 - 44UNF 2.740 2.551 2.69 1 - 12UNF 23.571 23.114 23.57 0.6 - 32UNC 3.695 3.022 2.977 1 - 20UNEF 24.307 24.029 24.24 0.8 - 32UNF 3.606 3.404 3.55 1 1/8 - 8UN 25.781 25.146 25.6 0.10 - 24UNC 3.962 3.683 3.89 1 1/8 - 8UN 27.381 27.051 27.301 1.2 - 24UNC 4.597 4.344 4.53 1 1/4 - 7UNC 28.524 27.813 28.44 1.2 - 24UNF 4.623 4.774 1 1/4 - 8UN 29.961 23.026 30.471 1.4 - 20UNC 5.257	No. 3 - 48UNC	2.146	1.941	2.09	³ /4 - 20UNEF	17.957	17.679	17.89
2.4 + 40UNC 2.385 2.157 2.33 7/6 - 14UNF 2.0675 2.0.270 2.0.6 3.4 - 48UNF 2.458 2.271 2.41 7/6 - 14UNF 21.132 20.854 21.06 5.5 - 40UNC 2.697 2.487 2.64 1 - 8UNC 22.660 21.971 22.5 5.5 - 40UNF 2.700 2.551 2.69 1 - 12UNF 23.571 23.114 23.57 5.6 - 40UNF 3.022 2.820 2.97 1 - 20UNEF 24.307 24.029 24.24 5.8 - 32UNC 3.580 3.302 3.47 1 1/6 - 7UNC 25.349 26.68 25.27 5.10 - 24UNC 3.597 4.344 4.53 1 1/6 - 12UNF 26.766 26.289 26.66 5.12 - 24UNC 4.597 4.344 4.53 1 1/4 - 12UNF 29.642 27.813 28.4 1.12 - 20UNC 5.257 4.979 5.19 1 1/4 - 18UNF 30.586 30.226 30.4 1.4 - 20UNC 5.257 4.979 5.5	No. 3 - 56UNF	2.197	2.025	2.15	⁷ /8 - 9UNC	19.761	19.177	19.6
2.4 - 48UNF 2.458 2.271 2.41 7/8 - 20UNEF 21.132 20.854 21.06 5.5 - 40UNC 2.697 2.487 2.64 1 - 8UNC 22.606 21.971 22.55 5. 6 - 40UNF 3.022 2.820 2.97 1 - 14UNS 23.825 23.445 23.57 5. 8 - 32UNC 3.530 3.302 3.47 1 - 14UNS 23.825 24.458 25.2 5.8 - 32UNF 3.606 3.404 3.55 1 - 14UNS 23.825 24.458 25.2 1.1% - 7UNC 25.349 24.638 25.2 24.74 24.638 25.2 1.1% - 7UNC 25.349 24.638 25.2 24.78 25.6 11% - 7UNC 25.74 27.81 27.01 27.051 27.30 11% - 7UNC 25.56 30.22 30.47 5.12 - 24UNF 5.588 5.360 5.54 11/4 - 7UNC 28.52 24.88 11/4 - 7UNC 28.52 30.47 1/4 - 32UNEF 5.588 5.360 5.54	No. 4 - 40UNC	2.385	2.157	2.33	⁷ /8 - 14UNF	20.675	20.270	20.6
2.5 - 40UNC 2.697 2.487 2.64 3.5 - 44UNF 2.740 2.551 2.69 3.6 - 32UNC 2.895 2.642 2.83 3.6 - 40UNF 3.022 2.820 2.97 3.6 - 32UNC 3.530 3.302 3.47 1.6 - 70UNF 3.666 3.404 3.55 3.6 - 32UNF 3.666 3.404 3.55 1.70 - 24UNC 3.962 3.683 3.89 3.10 - 24UNC 4.597 4.344 4.53 3.12 - 22UNC 4.597 4.344 4.53 3.12 - 22UNC 4.597 4.344 4.53 1.1/a - 18UNF 28.56 28.81 1/a - 8UN 28.56 27.30 1.2 - 22UNC 4.597 4.344 4.53 1/4 - 8UN 28.56 28.21 28.64 1.1/a - 20UNF 5.689 5.467 5.64 1/4 - 8UN 28.56 28.21 28.64 1.4 - 32UNEF 7.055 6.782 6.97 1/a - 8UN 32.131 31.496 32.01 1.3/a - 18UNF 7.055 6.782 6.	No. 4 - 48UNF	2.458	2.271	2.41	⁷ /8 - 20UNEF	21.132	20.854	21.06
2.5 - 44UNF 2.740 2.551 2.69 3.6 - 32UNC 2.895 2.642 2.83 5.6 - 32UNC 3.895 2.642 2.83 5.6 - 40UNF 3.022 2.820 2.97 5.8 - 32UNC 3.530 3.302 3.47 5.8 - 36UNF 3.606 3.404 3.55 5.10 - 24UNC 3.962 3.683 3.89 5.11 - 24UNC 4.165 3.963 4.12 5.12 - 24UNC 4.997 4.344 4.53 5.12 - 24UNC 4.997 4.344 4.53 5.12 - 22UNF 4.724 4.496 4.67 1 1/a - 20NF 29.864 27.813 28.44 1 1/a - 20NF 29.866 28.321 28.8 1 1/a - 20NF 5.588 5.360 5.53 11/a - 14UNF 29.921 29.464 29.8 1 1/a - 20NF 7.035 6.782 6.97 13/8 - 80N 31.115 30.363 30.9 1/a - 20NF 7.035 6.782 6.97 13/8 - 80N 32.131 31.496 32.0 1/	No. 5 - 40UNC	2.697	2.487	2.64	1 - 8UNC	22.606	21.971	22.5
2.6.6 32UNC 2.895 2.642 2.83 1 1 14UNS 23.825 23.445 23.7 2.6 40UNF 3.022 2.820 2.97 1 24.029 24.24 2.8 3.80 3.302 3.47 1 1% - 7UNC 25.349 24.638 25.2 2.8 3.600 3.404 3.55 1% - 8UNC 25.781 25.146 25.66 2.10 - 22UNF 4.165 3.963 4.12 1% - 12UNF 26.746 26.289 26.6 2.12 - 22UNF 4.597 4.344 4.53 1% - 12UNF 28.624 27.813 28.4 2.12 - 22UNF 4.724 4.496 4.67 1% - 12UNF 29.921 29.464 29.8 2.12 - 22UNF 4.826 4.623 4.78 1% - 12UNF 29.921 29.464 29.8 1/4 - 22UNF 5.689 5.630 5.53 1% - 18UNEF 33.096 32.639 33.0 1/4 - 32UNF 5.689 5.467 5.64 1% - 18UNF 3.096 32.639 33.0 <	No. 5 - 44UNF	2.740	2.551	2.69	1 - 12UNF	23.571	23.114	23.5
b. 6 - 40UNF 3.022 2.820 2.97 0.8 - 32UNC 3.530 3.302 3.47 0.8 - 32UNC 3.530 3.302 3.47 0.8 - 32UNC 3.606 3.404 3.55 0.10 - 24UNC 3.962 3.683 3.89 0.10 - 24UNC 4.165 3.963 4.12 0.11 - 20UNF 4.165 3.963 4.12 0.12 - 24UNC 4.597 4.344 4.53 0.12 - 22UNF 4.266 4.623 4.78 1/4 - 120NF 28.956 28.321 28.84 1/4 - 20NC 5.257 4.979 5.19 1/4 - 20NF 5.689 5.487 5.64 5/6 - 120NC 6.731 6.401 6.65 5/6 - 32UNEF 7.264 7.087 7.22 1/4 - 120NF 33.096 32.639 33.0 1/4 - 240NF 7.035 6.782 6.97 5/6 - 32UNEF 7.264 7.087 7.22 1/2 - 60NC 34.671 35.26 1/2 - 60NF 8.636 8.382 8.57	No. 6 - 32UNC	2.895	2.642	2.83	1 - 14UNS	23.825	23.445	23.7
b. 8 - 32UNC 3.530 3.302 3.47 b. 8 - 36UNF 3.606 3.404 3.55 b. 10 - 24UNC 3.962 3.683 3.89 b.10 - 24UNC 3.962 3.683 3.89 b.10 - 24UNC 3.962 3.683 3.89 b.10 - 24UNC 4.165 3.963 4.12 b.11 - 24UNC 4.597 4.344 4.53 b.12 - 24UNC 4.597 4.344 4.63 b.12 - 24UNC 4.597 4.344 4.67 b.12 - 24UNF 4.724 4.496 4.67 b.12 - 32UNEF 4.826 4.623 4.78 b.14 - 20UNC 5.588 5.500 5.53 b.14 - 20UNF 5.588 5.600 5.53 b.14 - 32UNEF 5.689 5.487 5.64 b.566 3.026 3.00 13/8 - 8UN 32.131 31.496 32.0 1/4 - 32UNEF 7.035 6.782 6.97 13/8 - 8UN 32.131 31.496 32.0 1/8 - 24UNF 7.035 6.782 6.97 1/2 - 8UN 35	No. 6 - 40UNF	3.022	2.820	2.97	1 - 20UNEF	24.307	24.029	24.24
b. 8 - 36UNF 3.606 3.404 3.55 b.10 - 24UNC 3.962 3.683 3.89 b.10 - 32UNF 4.165 3.963 4.12 b.12 - 24UNC 4.597 4.344 4.53 b.12 - 24UNC 4.597 4.344 4.53 b.12 - 24UNC 4.597 4.344 4.53 b.12 - 28UNF 4.724 4.496 4.67 b.12 - 28UNF 4.826 4.623 4.78 1/4 - 28UNF 5.588 5.360 5.53 1/4 - 28UNF 5.588 5.360 5.53 1/4 - 32UNEF 5.889 5.487 5.64 1/4 - 32UNEF 5.889 5.487 5.64 1/4 - 32UNEF 7.087 7.22 1/4 - 32UNEF 7.264 7.087 7.22 1/2 - 8UNF 8.636 8.382 8.57 1/2 - 20UNF 10.033 9.729 9.96 1/2 - 120NF 36.96 36.576 36.82 1/2 - 120NF 1.023 10.592 10.9 1/2 - 120NF 1.0337 10.135 10.29<	No. 8 - 32UNC	3.530	3.302	3.47	1 ¹ /8 - 7UNC	25.349	24.638	25.2
b.10 - 24UNC 3.962 3.683 3.89 1 ½-12UNF 26.746 26.289 26.6 b.10 - 32UNF 4.165 3.963 4.12 1 1/b-18UNEF 27.381 27.051 27.30 b.12 - 24UNC 4.597 4.344 4.53 1 1/b-18UNEF 28.524 27.813 28.4 b.12 - 28UNF 4.724 4.496 4.67 1 1/a - 8UN 28.56 28.321 28.8 b.12 - 28UNF 4.826 4.623 4.78 1 1/4 - 8UN 28.956 28.321 28.8 1/4 - 20UNC 5.257 4.979 5.19 1 1/a - 8UN 28.956 30.226 30.47 1/4 - 32UNF 5.689 5.487 5.64 1/a - 8UN 32.131 31.496 32.0 1/4 - 32UNF 7.035 6.782 6.97 1/a - 8UN 32.131 33.401 33.65 5/6 - 32UNF 7.264 7.087 7.22 1 ½ - 6UNC 34.290 33.528 34.1 1	No. 8 - 36UNF	3.606	3.404	3.55	1 ¹ /8 - 8UN	25.781	25.146	25.6
b.10 - 32UNF 4.165 3.963 4.12 b.12 - 24UNC 4.597 4.344 4.53 b.12 - 28UNF 4.724 4.496 4.67 b.12 - 28UNF 4.724 4.496 4.67 b.12 - 28UNF 4.724 4.496 4.67 b.12 - 32UNEF 4.826 4.623 4.78 1/4 - 20UNC 5.257 4.979 5.19 1/4 - 28UNF 5.588 5.360 5.53 1/4 - 32UNEF 5.689 5.487 5.64 5/66 - 18UNC 6.731 6.401 6.65 5/66 - 32UNEF 7.264 7.087 7.22 3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 7.264 7.087 7.22 1/2 - 20UNF 10.033 9.729 9.96 1/2 - 20UNF 10.337 10.135 10.29 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 20UNF 11.	No.10 - 24UNC	3.962	3.683	3.89	1 ¹ /8-12UNF	26.746	26.289	26.6
b.12 - 24UNC 4.597 4.344 4.53 b.12 - 28UNF 4.724 4.496 4.67 b.12 - 32UNEF 4.826 4.623 4.78 b.14 - 20UNC 5.257 4.979 5.19 1/4 - 28UNF 5.588 5.360 5.53 1/4 - 32UNEF 5.689 5.487 5.64 5/16 - 18UNC 6.731 6.401 6.65 5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 1/2 - 6UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 1/2 - 6UNC 36.576 36.82 1/2 - 8UNF 10.033 9.729 9.96 1/2 - 20UNF 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 20UNF 11.938 11.710 11.88 9/16 - 24UNF 13.081 12.751 13.00 9/16 - 24UNF 13.081 12.751 <	No.10 - 32UNF	4.165	3.963	4.12	1 ¹ /8-18UNEF	27.381	27.051	27.30
b.12 - 28UNF 4.724 4.496 4.67 b.12 - 32UNEF 4.826 4.623 4.78 1/4 - 20UNC 5.257 4.979 5.19 1/4 - 28UNF 5.588 5.360 5.53 1/4 - 32UNEF 5.689 5.487 5.64 5/16 - 18UNC 6.731 6.401 6.65 5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 7.264 7.087 7.22 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 3/76 - 20UNF 10.033 9.729 9.96 1/2 - 20UNF 10.337 10.135 10.29 1/2 - 20UNF 11.809 12.3 15/6 - 18UNEF 40.081 39.751 1/2 - 20UNF 11.938 11.710 11.88 13/4 - 5UNC 39.827	No.12 - 24UNC	4.597	4.344	4.53	1 ¹ /4 - 7UNC	28.524	27.813	28.4
b.12 - 32UNEF 4.826 4.623 4.78 1/4 - 20UNC 5.257 4.979 5.19 1/4 - 28UNF 5.588 5.360 5.53 1/4 - 32UNEF 5.689 5.487 5.64 5/16 - 18UNC 6.731 6.401 6.65 5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 3/8 - 18UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 3/8 - 32UNEF 10.033 9.729 9.96 1/2 - 12UNF 11/2-18UNEF 36.906 36.576 36.82 1/2 - 13UNC 11.023 10.592 10.9 1/4-18UNEF 40.081 39.751 40.00 1/2 - 28UNEF 11.938 11.710 11.88 1/4-12UN 42.621 42.164 42.5 9/16 - 12UNC 12.446 11.989 12.3 2 - 4.5UNC 45.593 44.679	No.12 - 28UNF	4.724	4.496	4.67	1 ¹ /4 - 8UN	28.956	28.321	28.8
1/4 - 20UNC 5.257 4.979 5.19 1/4 - 28UNF 5.588 5.360 5.53 1/4 - 32UNEF 5.689 5.487 5.64 1/4 - 32UNEF 5.689 5.487 5.64 5/16 - 18UNC 6.731 6.401 6.65 5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 22UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 20UNF 10.033 9.729 9.96 1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 12UNEF 13.385	No.12 - 32UNEF	4.826	4.623	4.78	1 ¹ /4-12UNF	29.921	29.464	29.8
1/4 - 28UNF 5.588 5.360 5.53 1/4 - 32UNEF 5.689 5.487 5.64 5/16 - 18UNC 6.731 6.401 6.65 5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 20UNF 10.033 9.729 9.96 1/2 - 20UNF 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 20UNF 11.033 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.385 13.132 13.32	1/4 - 20UNC	5.257	4.979	5.19	1 ¹ /4-18UNEF	30.556	30.226	30.47
1/4 - 32UNEF 5.689 5.487 5.64 5/16 - 18UNC 6.731 6.401 6.65 5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 28UNEF 10.033 9.729 9.96 7/16 - 28UNEF 11.023 10.592 10.9 1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.081 12.751 13.00 2 - 8UN 48.006 47.371 47.9 9/16 - 18UNF 13.385 13.132 13.32	¹ /4 - 28UNF	5.588	5.360	5.53	1 ³ /8 - 6UNC	31.115	30.353	30.9
5/16 - 18UNC 6.731 6.401 6.65 5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 1/2 - 8UNE 36.97 35.306 34.671 35.28 3/8 - 32UNEF 8.864 8.662 8.81 1/2 - 8UN 35.306 36.576 36.82 3/8 - 32UNEF 8.864 8.662 8.81 1/2 - 12UNF 36.271 35.814 36.2 3/7 16 - 20UNF 10.033 9.729 9.96 15/8 - 8UN 38.481 37.846 38.3 1/2 - 20UNF 11.023 10.592 10.9 1/3/4 - 5UNC 39.827 38.964 39.6 1/2 - 20UNF 11.607 11.329 11.54 1/3/4 - 8UN 41.656 41.021 41.5 1/2 - 20UNF 11.938 11.710 11.88 2 - 4.5UNC 45.593 44.679 45.4 9/16 - 12UNC <	¹ /4 - 32UNEF	5.689	5.487	5.64	1 ³ /8 - 8UN	32.131	31.496	32.0
5/16 - 24UNF 7.035 6.782 6.97 5/16 - 32UNEF 7.264 7.087 7.22 3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 3/8 - 32UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 20UNF 10.033 9.729 9.96 1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 24UNF 13.385 13.132 13.32	⁵ /16 - 18UNC	6.731	6.401	6.65	1 ³ /8-12UNF	33.096	32.639	33.0
5/16 - 32UNEF7.2647.0877.223/8 - 16UNC8.1537.7988.073/8 - 24UNF8.6368.3828.573/8 - 24UNF8.6368.3828.573/8 - 32UNEF8.8648.6628.817/16 - 14UNC9.5509.1449.57/16 - 20UNF10.0339.7299.961/2 - 13UNC11.02310.59210.91/2 - 13UNC11.02310.59210.91/2 - 20UNF11.60711.32911.541/2 - 28UNEF11.93811.71011.889/16 - 12UNC12.44611.98912.39/16 - 12UNC13.38513.13213.329/16 - 24UNEF13.38513.13213.32	⁵ /16 - 24UNF	7.035	6.782	6.97	1 ³ /8-18UNEF	33.731	33.401	33.65
3/8 - 16UNC 8.153 7.798 8.07 3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 3/8 - 32UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 20UNF 10.033 9.729 9.96 1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 24UNEF 13.385 13.132 13.32	⁵ /16 - 32UNEF	7.264	7.087	7.22	1 ¹ /2 - 6UNC	34.290	33.528	34.1
3/8 - 24UNF 8.636 8.382 8.57 3/8 - 32UNEF 8.864 8.662 8.81 3/8 - 32UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 20UNF 10.033 9.729 9.96 7/16 - 28UNEF 10.337 10.135 10.29 1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.081 12.751 13.00 9/16 - 24UNEF 13.385 13.132 13.32	³ /8 - 16UNC	8.153	7.798	8.07	1 ¹ /2 - 8UN	35.306	34.671	35.2
3/8 - 32UNEF 8.864 8.662 8.81 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 14UNC 9.550 9.144 9.5 7/16 - 20UNF 10.033 9.729 9.96 7/16 - 28UNEF 10.337 10.135 10.29 1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.081 12.751 13.00 9/16 - 24UNEF 13.385 13.132 13.32	³ /8 - 24UNF	8.636	8.382	8.57	1 ¹ /2-12UNF	36.271	35.814	36.2
7/16 - 14UNC 9.550 9.144 9.5 $15/8 - 8UN$ 38.481 37.846 38.3 $7/16 - 20UNF$ 10.033 9.729 9.96 $15/8 - 8UN$ 39.446 38.989 39.3 $7/16 - 28UNEF$ 10.337 10.135 10.29 $15/8 - 12UN$ 39.446 38.989 39.3 $1/2 - 13UNC$ 11.023 10.592 10.9 $15/8 - 18UNEF$ 40.081 39.751 40.00 $1/2 - 20UNF$ 11.607 11.329 11.54 $13/4 - 5UNC$ 39.827 38.964 39.6 $1/2 - 28UNEF$ 11.938 11.710 11.88 $13/4 - 8UN$ 41.656 41.021 41.5 $9/16 - 12UNC$ 12.446 11.989 12.3 $2 - 4.5UNC$ 45.593 44.679 45.4 $9/16 - 18UNF$ 13.081 12.751 13.00 $2 - 8UN$ 48.006 47.371 47.9 $9/16 - 24UNEF$ 13.385 13.132 13.32 13.32 $2 - 12UN$ 48.971 48.514 48.9	³ /8 - 32UNEF	8.864	8.662	8.81	1 ¹ /2-18UNEF	36.906	36.576	36.82
7/16 - 20UNF 10.033 9.729 9.96 $15/8-12UN$ 39.446 38.989 39.3 $7/16 - 28UNEF$ 10.337 10.135 10.29 $15/8-18UNEF$ 40.081 39.751 40.00 $1/2 - 13UNC$ 11.023 10.592 10.9 $13/4 - 5UNC$ 39.827 38.964 39.6 $1/2 - 20UNF$ 11.607 11.329 11.54 $13/4 - 8UN$ 41.656 41.021 41.5 $1/2 - 28UNEF$ 11.938 11.710 11.88 $13/4 - 12UN$ 42.621 42.164 42.5 $9/16 - 12UNC$ 12.446 11.989 12.3 $2 - 4.5UNC$ 45.593 44.679 45.4 $9/16 - 24UNEF$ 13.385 13.132 13.32 13.32 $2 - 12UN$ 48.971 48.514 48.9	⁷ /16 - 14UNC	9.550	9.144	9.5	1 ⁵ /8 - 8UN	38.481	37.846	38.3
7/16 - 28UNEF 10.337 10.135 10.29 1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.081 12.751 13.00 9/16 - 24UNEF 13.385 13.132 13.32	⁷ /16 - 20UNF	10.033	9.729	9.96	1 ⁵ /8-12UN	39.446	38.989	39.3
1/2 - 13UNC 11.023 10.592 10.9 1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.081 12.751 13.00 9/16 - 24UNEF 13.385 13.132 13.32	⁷ /16 - 28UNEF	10.337	10.135	10.29	1 ⁵ /8-18UNEF	40.081	39.751	40.00
1/2 - 20UNF 11.607 11.329 11.54 1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.081 12.751 13.00 9/16 - 24UNEF 13.385 13.132 13.32	1/2 - 13UNC	11.023	10.592	10.9	1 ³ /4 - 5UNC	39.827	38.964	39.6
1/2 - 28UNEF 11.938 11.710 11.88 9/16 - 12UNC 12.446 11.989 12.3 9/16 - 18UNF 13.081 12.751 13.00 9/16 - 24UNEF 13.385 13.132 13.32	¹ /2 - 20UNF	11.607	11.329	11.54	1 ³ /4 - 8UN	41.656	41.021	41.5
9/16 - 12UNC 12.446 11.989 12.3 2 - 4.5UNC 45.593 44.679 45.4 9/16 - 18UNF 13.081 12.751 13.00 2 - 8UN 48.006 47.371 47.9 9/16 - 24UNEF 13.385 13.132 13.32 2 - 12UN 48.971 48.514 48.9	1/2 - 28UNEF	11.938	11.710	11.88	1 ³ /4-12UN	42.621	42.164	42.5
9/16 - 18UNF 13.081 12.751 13.00 2 - 8UN 48.006 47.371 47.9 9/16 - 24UNEF 13.385 13.132 13.32 2 - 12UN 48.971 48.514 48.9	⁹ /16 - 12UNC	12.446	11.989	12.3	2 - 4.5UNC	45.593	44.679	45.4
9/16 - 24UNEF 13.385 13.132 13.32 2 - 12UN 48.971 48.514 48.9	⁹ /16 - 18UNF	13.081	12.751	13.00	2 - 8UN	48.006	47.371	47.9
	⁹ /16 - 24UNEF	13.385	13.132	13.32	2 - 12UN	48.971	48.514	48.9

• The recommended tap drill sizes indicated above are for ANSI B1.1 Class 2B UNC, UNF, UNEF, UN & UNS threads.

ISO P

for Helical Coil Wire Thread Inserts, Metric Threads

unit:mm									
Nominal size	Bored h	ole size	Bored hole size						
	Max.	Min.	(ref.)						
STI M 2 ×0.4	2.16	2.10	2.15						
STI M 2.5×0.45	2.68	2.60	2.66						
STI M 2.6×0.45	2.78	2.70	2.76						
STI M 3 ×0.5	3.20	3.12	3.18						
STI M 4 ×0.7	4.30	4.17	4.27						
STI M 5 ×0.8	5.33	5.16	5.29						
STIM 6 ×1	6.42	6.25	6.38						
STIM 8 ×1.25	8.52	8.31	8.47						
STI M10 ×1.5	10.62	10.37	10.56						
STI M10 ×1.25	10.52	10.31	10.47						
STI M10×1	10.42	10.25	10.38						
STI M12×1.75	12.73	12.43	12.66						
STI M12×1.5	12.62	12.37	12.56						
STI M12×1.25	12.52	12.31	12.47						
STI M14×2	14.83	14.49	14.75						
STI M14×1.5	14.62	14.37	14.56						
STI M14×1.25	14.52	14.31	14.47						
STI M16×2	16.83	16.49	16.75						
STI M16×1.5	16.62	16.37	16.56						
STI M18×2.5	19.04	18.58	18.93						
STI M18×1.5	18.62	18.37	18.56						
STI M20×2.5	21.04	20.58	20.93						
STI M20×1.5	20.62	20.37	20.56						
STI M22×2.5	23.04	22.58	22.93						
STI M22×1.5	22.62	22.37	22.56						
STI M24×3	25.25	24.70	25.11						
STI M24×1.5	24.62	24.37	24.56						

Sizo	Minor diameter of i	nternal threads (D ₁)	Bored hole size		
Size	Max.	Min.	(ref.)		
STI No. 2 - 56 UNC	2.440	2.284	2.40		
STI No. 4 - 40 UNC	3.180	2.985	3.13		
STI No. 4 - 48 UNF	3.121	2.962	3.08		
STI No. 5 - 40 UNC	3.487	3.315	3.44		
STI No. 6 - 32 UNC	3.878	3.678	3.83		
STI No. 6 - 40 UNF	3.817	3.645	3.77		
STI No. 8 - 32 UNC	4.523	4.339	4.48		
STI No. 8 - 36 UNF	4.498	4.321	4.45		
STI No. 10 - 24 UNC	5.283	5.055	5.23		
STI No. 10 - 32 UNF	5.184	4.999	5.14		
STI No. 12 - 24 UNC	5.943	5.715	5.89		
STI 1/4 - 20 UNC	6.868	6.625	6.81		
STI 1/4 - 28 UNF	6.720	6.546	6.68		
STI 5/16 - 18 UNC	8.488	8.243	8.43		
STI 5/16 - 24 UNF	8.351	8.167	8.31		
STI 3/8 - 16 UNC	10.126	9.868	10.06		
STI 3/8 - 24 UNF	9.931	9.754	9.89		
STI 7/16 - 14 UNC	11.783	11.507	11.71		
STI 7/16 - 20 UNF	11.584	11.387	11.53		
STI 1/2 - 13 UNC	13.393	13.122	13.33		
STI 1/2 - 20 UNF	13.172	12.975	13.12		
STI 5/8 - 11 UNC	16.672	16.376	16.60		
STI 5/8 - 18 UNF	16.385	16.180	16.33		
STI 3/4 - 16 UNF	19.608	19.393	19.55		

for Helical Coil Wire Thread Inserts, Unified Threads

unit: mm

• The figures listed above are according to the data provided by helical coil wire insert manufacturers

unit non

for Whitworth Threads

			unit. min
Sizo	Minor diameter of i	nternal threads (D1)	Bored hole size
Size	Max.	Min.	(ref.)
* 1/8 W 40	(2.591)	(2.362)	2.53
* ³ / ₁₆ W 24	(3.744)	(3.406)	3.66
1/4 W 20	5.204	4.914	5.13
⁵ /16 W 18	6.670	6.340	6.59
³ /8 W 16	8.113	7.733	8.02
7/16 W 14	9.508	9.048	9.4
¹ /2 W 12	10.830	10.310	10.7
9/16 W 12	12.418	11.898	12.3
⁵ /8 W 11	13.817	13.257	13.7
³ /4 W 10	16.778	16.178	16.6
7/8 W 9	19.691	19.031	19.5
1 W 8	22.514	21.814	22.3

D_i: Minor diameter of JIS Class 2 internal thread.
 Whitworth Threads have been eliminated from JIS.
 *Marked sizes are in accordance with BSW.

for Sewing Machine Threads

	Sizo	Minor diameter of i	nternal threads (D ₁)	Bored hole size								
	Size	Max.	Min.	(ref.)								
	1/16 SM 80	1.281	1.211	1.26								
	5/64 SM 64	1.593	1.513	1.57								
	^{3/} 32 SM 56	1.936	1.841	1.91								
	3/32 SM 100	2.156	2.081	2.14								
	1/8 SM 40	2.551	2.421	2.52								
	1/8 SM 44	2.605	2.485	2.58								
	9/64 SM 40	2.948	2.818	2.92								
	11/64 SM 40	3.742	3.612	3.71								
	³ /16 SM 24	3.658	3.498	3.62								
	^{3/16} SM 28	3.844	3.684	3.80								
	^{3/16} SM 32	3.980	3.820	3.94								
	3/16 SM 40	4.138	4.008	4.11								
	7/32 SM 32	4.774	4.614	4.73								
	^{15/64} SM 28	5.055	4.875	5.01								
	1/4 SM 24	5.266	5.086	5.22								
	1/4 SM 40	5.726	5.596	5.69								

for Pipe Threads

OPS, Rp	unit: mm		
Si z o	Minor Diameter of JI	5 internal thread (D1)	Bored hole size
Size	Max.	Min.	(ref.)
PS ¹ /16 - 28	6.632	6.490	6.60
PS ¹ /8 - 28	8.637	8.495	8.60
PS ¹ /4 - 19	11.549	11.341	11.50
PS ³ /8 - 19	15.054	14.846	15.00
PS ¹ /2 - 14	18.773	18.489	18.7
PS ³ /4 - 14	24.259	23.975	24.2
PS 1 - 11	30.472	30.110	30.4
PS 1 ¹ /4-11	39.133	38.771	39.0
PS 1 ¹ /2-11	45.026	44.664	44.9
PS 2 - 11	56.837	56.475	56.8

⊖PF, G	unit: mm		
Size	Minor Diameter of JIS	S internal thread (D1)	Bored hole size
5120	Max.	Min.	(ref.)
PF ¹ /16 - 28	6.843	6.561	6.77
PF ¹ /8 - 28	8.848	8.566	8.78
PF ¹ /4 - 19	11.890	11.445	11.78
PF ³ /8 - 19	15.395	14.950	15.28
PF ¹ /2 - 14	19.172	18.631	19.0
PF ⁵ /8 - 14	21.128	20.587	21.0
PF ³ /4 - 14	24.658	24.117	24.5
PF ⁷ /8 - 14	28.418	27.877	28.3
PF 1 - 11	30.931	30.291	30.8
PF 1 ¹ /8-11	35.579	34.939	35.4
PF 1 ¹ /4-11	39.592	38.952	39.4
PF 1 ¹ /2-11	45.485	44.845	45.3
PF 1 ³ /4-11	51.428	50.788	51.3
PF 2 - 11	57.296	56.656	57.1

■ for American Standard Pipe Thread

			unit: mm					unit: mm
Sizo	Minor diameter o	Bored hole size		Sizo	Minor diameter c	Bored hole size		
Size	Max.	Min.	(ref.)		Size	Max.	Min.	(ref.)
NPSC 1/8 - 27	8.813	8.636	8.77		NPSM 1/8 - 27	9.246	9.094	9.21
NPSC 1/4 - 18	11.592	11.329	11.53		NPSM 1/4 - 18	12.217	11.888	12.13
NPSC ³ /8 - 18	14.919	14.656	14.85		NPSM 3/8 - 18	15.554	15.317	15.49
NPSC 1/2 - 14	18.501	18.161	18.4		NPSM 1/2 - 14	19.278	18.974	19.2
NPSC 3/4 - 14	23.835	23.495	23.7		NPSM 3/4 - 14	24.638	24.334	24.5
NPSC 1 - 11.5	29.903	29.490	29.8		NPSM 1 - 11.5	30.759	30.506	30.7

for Dryseal American Standard Pipe Thread

unit: mm											
Sizo	Minor diameter c	Bored hole size									
5120	Max.	Min.	(ref.)								
NPSF 1/8 - 27	8.740	8.652	8.72								
NPSF 1/4 - 18	11.363	11.232	11.33								
NPSF 3/8 - 18	14.803	14.672	14.77								
NPSF 1/2 - 14	18.288	18.118	18.2								
NPSF 3/4 - 14	23.634	23.465	23.5								
NPSF 1 - 11.5	29.669	29.464	29.6								

CUTTING TAPS

TECHNICAL INFORMATION

53

FORMING TAPS

Recommended Bored Hole Size Table for Taper Pipe Threads (PT)

Remarks during tapping

• PT internal threads have R design on their crests. The taps should cut threads with their thread root.

		Thread	Standards			Minor Diamet	er	Recomme	nded Bored	reference	
		Desia				When	When	Hole Sizes	Тар		
Size	Basic Diameter	Diameter Position	Effective Th (Mini	read Length mum)	Pipe End (Workpiece Face)	have non-Full Threads	do not have the non-Full Threads	Maximum Size of Straight Bored Hole		Basic Diameter Position, g	
		Pipe End	When Threads	When (Basic Threads Diamater)		Position	Position	When When			
	Tolerance in radial	Tolerance in axial	have non-Full Threads ¹⁾	do not have the non-Full		Pipe End by	Pipe End by	Threads have	Threads do not have	Long Thread	Short Thread
	direction	c	l Threads" l	t t	Basic Size	Basic Size	Basic Size	Threads	Threads	туре	туре
1	2	3	4	5	6	\bigcirc	8	9	10	1	12
PT 1/16 - 28	±0.071	±1.13	6.2	4.4	6.561	6.174	6.286	6.1	6.2	13.0	10.5
PT 1/8 - 28	±0.071	±1.13	6.2	4.4	8.566	8.179	8.291	8.1	8.2	13.0	10.5
PT 1/4 - 19	±0.104	±1.67	9.4	6.7	11.445	10.858	11.026	10.7	10.9	21.0	12.5
PT 3/8 - 19	±0.104	±1.67	9.7	7.0	14.950	14.344	14.513	14.2	14.4	21.0	14.0
PT 1/2 - 14	±0.142	±2.27	12.7	9.1	18.631	17.837	18.062	17.6	17.9	25.0	17.0
PT ³ / ₄ - 14	±0.142	±2.27	14.1	10.2	24.117	23.236	23.480	23.0	23.3	25.0	19.0
PT 1 - 11	±0.181	±2.89	16.2	11.6	30.291	29.279	29.566	29.0	29.3	32.0	22.0
PT 1 1/4 - 11	±0.181	±2.89	18.5	13.4	38.952	37.796	38.115	37.6	37.9	32.0	24.5
PT 1 1/2 - 11	±0.181	±2.89	18.5	13.4	44.845	43.689	44.008	43.5	43.8	32.0	25.5
PT 2 - 11	±0.181	±2.89	22.8	16.9	56.656	55.231	55.600	55.0	55.4	35.0	28.0

- Remarks 1. Opening of Internal Thread (Face of workpiece) is Basic Diameter Position.
- Remarks 2. Effective Thread Length has 2 types, with non-Full Thread Type and without non-Full Thread Type.
- Remarks 3. Concerning bored hole shape, considering load on taps, taper bored hole is recommended.
- Remarks 4. When applying taper bored hole, by referring to values shown in columns (2.6)~(8), prepare the taper hole by using pipe reamer (1/16 taper). By referring to values shown in columns (9) and (00), select the drill diameter before reaming by taking reamer's margin into account.
- Remarks 5. When preparing straight bored hole, by referring to values shown in columns (9) and (10), select drill diameter.

												ciric: ritiri
						Minor Diamator						reference
								hameter			(reference)	Тар
	Size	L1	L3	L1+L3	Pipe End (E	asic Diamet	er Position)	Position away from Pipe End by (L1+L3)			Maximum Size of	Basic Diameter
					Maximum Value	Minimum Value	Tolerance	Maximum Value	Minimum Value	Tolerance	Straight Bored Hole	Position ℓg
	1	2	3	4	5	6	\bigcirc	8	9	10	1	12
NPT	1/16 - 27	4.064	2.822	6.886	6.510	6.388	0.122	6.080	5.958	0.122	6.05	12.00
NPT	1/8 - 27	4.102	2.822	6.924	8.857	8.736	0.122	8.425	8.303	0.122	8.39	12.05
NPT	1/4 - 18	5.786	4.234	10.020	11.514	11.357	0.157	10.888	10.730	0.157	10.85	17.45
NPT	3/8 - 18	6.096	4.234	10.330	14.953	14.796	0.157	14.308	14.150	0.157	14.27	17.65
NPT	1/2 - 14	8.128	5.443	13.571	18.485	18.323	0.163	17.637	17.475	0.163	17.60	22.85
NPT	3/4 - 14	8.611	5.443	14.054	23.831	23.668	0.163	22.952	22.790	0.163	22.91	22.95
NPT	1 - 11.5	10.160	6.627	16.787	29.868	29.696	0.173	28.819	28.647	0.173	28.78	27.40
NPT	1 1/4 - 11.5	10.668	6.627	17.295	38.625	38.452	0.173	37.544	37.372	0.173	37.50	28.10
NPT	1 1/2 - 11.5	10.668	6.627	17.295	44.695	44.522	0.173	43.614	43.441	0.173	43.57	28.40
NPT	2 - 11.5	11.074	6.627	17.701	56.732	56.560	0.173	55.626	55.454	0.173	55.58	28.00

Recommended Bored Hole Size Table for American Taper Pipe Threads (NPT)

- Remarks 1. Pipe End is Basic Diameter Position (E1). Remarks 2. Effective Thread Length is the length away
 - marks 2. Effective Thread Length is the length away from Pipe End by (L1+L3).
- Remarks 3. Concerning bored hole shape, considering load on taps, taper bored hole is recommended.
- Remarks 4. When applying taper bored hole, by referring to values in shown columns (5), (6) and (8), (9), prepare the taper hole by using pipe reamer (1/16 taper). By referring to values shown in column (11), select the drill diameter before reaming by taking reamer's margin into account.
- Remarks 5. When preparing straight bored hole, by referring to values shown in column ⁽¹⁾, select drill diameter.

CUTTING TAPS

ISO P

FORMING TAPS

											unit: mm
										Bored Hole	reference
						Minor D	lameter			Size (reference)	Тар
Size	L1	L3 (3P)	L1+L3+1P	Pipe End (Basic Diameter Position)			Position of (L1+L3+1P)			Maximum Size of	Basic Diameter
				Maximum Value	Minimum Value	Tolerance	Maximum Value	Minimum Value	Tolerance	Straight Bored Hole	Position ℓg
1	2	3		5	6	Ĩ	8	9		1	
NPTF 1/16 - 27	4.064	2.822	7.827	6.505	6.414	0.091	6.015	5.923	0.091	5.99	12.00
NPTF 1/8 - 27	4.102	2.822	7.865	8.852	8.761	0.091	8.362	8.270	0.091	8.34	12.05
NPTF 1/4 - 18	5.786	4.234	11.431	11.484	11.397	0.086	10.770	10.684	0.086	10.75	17.45
NPTF 3/8 - 18	6.096	4.234	11.741	14.923	14.836	0.086	14.189	14.103	0.086	14.17	17.65
NPTF 1/2 - 14	8.128	5.443	15.386	18.419	18.333	0.086	17.459	17.373	0.086	17.44	22.85
NPTF 3/4 - 14	8.611	5.443	15.868	23.764	23.678	0.086	22.773	22.687	0.086	22.75	22.95
NPTF 1 - 11.5	10.160	6.627	18.996	29.812	29.726	0.086	28.625	28.538	0.086	28.60	27.40
NPTF 11/4 - 11.5	10.668	6.627	19.504	38.569	38.483	0.086	37.350	37.263	0.086	37.33	28.10
NPTF 11/2 - 11.5	10.668	6.627	19.504	44.639	44.552	0.086	43.420	43.334	0.086	43.40	28.40
NPTF 2 - 11.5	11.074	6.627	19.910	56.677	56.590	0.086	55.432	55.345	0.086	55.41	28.00

Recommended Bored Hole Size Table for American Dryseal Taper Pipe Threads (NPTF)

- Remarks 2. Effective Thread Length is the length away from Pipe End by (L1+L3+1P).
- Remarks 3. Concerning bored hole shape, considering load on taps, taper bored hole is recommended.
- Remarks 4. When applying taper bored hole, by referring to values shown in columns (5), (6) and (8), (9), prepare the taper hole by using pipe reamer (1/16 taper). By referring to values in shown column (11), select the drill diameter before reaming by taking reamer's margin into account.

Remarks 5. When preparing straight bored hole, by referring to values shown in column ⁽¹⁾, select drill diameter.

Percentage of Thread Engagement & Relation between Percentage of Thread Height and Area Removed at A Thread Height

As shown above, when the thread height increases, the amount of material to be removed increases rapidly, so it is an advantage to tap users to keep the hole size (thread minor diameter) as large as possible.

6. Bored hole size before tapping (for thread forming)

for Metric Threads

	incuas													unit: mm												
Size	Class	Recomr hole siz	mended ze (mm)	Thread engage- ment ratio	Minor dia internal (5H	ameter of threads /6H)		Size	Class	Recomr hole siz	nended æ (mm)	Thread engage- ment ratio	Minor dia internal (5H	ameter of threads /6H)												
		Max.	Min.	(Estimation %)	Max.	Min.				Max.	Min.	(Estimation %)	Max.	Min.												
N44 0.05	ISO2X	0.92	0.89	80~100	0.705	0.700		Mo. 4.05	ISO2X	7.52	7.39	80~100	0.010	0.047												
M1×0.25	ISO3X	0.91	0.89	75~90	0.785	0.729		M8×1.25	ISO3X	7.56	7.46	80~95	6.912	6.647												
M1 0. 0.05	ISO2X	1.11	1.09	80~100	0.005	0.000		M0 4	ISO2X	7.60	7.49	80~100	7 1 5 0	0.017												
WI1.2×0.25	ISO3X	1.11	1.09	75~90	0.985	0.929		IVI8×1	ISO3X	7.64	7.56	80~95	7.153	6.917												
	ISO2X	1.30	1.26	80~100	1 1 4 0	1.075			ISO2X	9.38	9.26	85~100	0.070	0.070												
WI1.4×0.3	ISO3X	1.31	1.28	70~90	1.142	1.075	MITUX1.5	ISO3X	9.47	9.35	80~95	8.676	8.376													
NH 0. 0.05	ISO2X	1.47	1.43	75~100	1 001	1 001		N440 4 05	ISO2X	9.52	9.38	80~100	0.010	0.047												
WIT.0X0.35	ISO3X	1.51	1.46	70~95	1.321	1.221		WITUX 1.25	ISO3X	9.55	9.45	80~95	8.912	8.647												
140.04	ISO2X	1.85	1.80	75~100	1 070	1 507		N40 4 75	ISO2X	11.27	11.13	85~100	10.444	10,100												
M2×0.4	ISO3X	1.89	1.84	70~95	1.679	1.567		M12×1.75	ISO3X	11.32	11.23	85~95	10.441	10.106												
NO 5 0 45	ISO2X	2.34	2.27	75~100	0 100	0.010			ISO2X	11.42	11.25	85~100	10.070	10.070												
WI2.5×0.45	ISO3X	2.36	2.31	75~95	2.138	2.013		WI12×1.5	ISO3X	11.45	11.33	80~95	10.676	10.376												
NO 05	ISO2X	2.83	2.76	75~100	0.500	0.450		N440 4 05	ISO2X	11.51	11.37	80~100	10.010	10.047												
M3×0.5	ISO3X	2.84	2.79	75~95	2.599	2.459		M12×1.25	ISO3X	11.54	11.43	80~95	10.912	10.647												
NO.5.0.0	ISO2X	3.30	3.22	75~100	0.010	0.050			ISO2X	13.17	13.00	85~100	10.010	44.005												
M3.5×0.6	ISO3X	3.32	3.25	75~95	3.010	2.850		IVI14×2	ISO3X	13.2	13.1	85~95	12.210	11.835												
	ISO2X	3.73	3.66	80~100	0.400	0.040			ISO2X	13.36	13.23	85~100	10.070	10.070												
M4×0.7	ISO3X	3.77	3.69	75~95	3.422	3.242		M14×1.5	ISO3X	13.44	13.32	80~95	12.676	12.376												
	ISO2X	4.68	4.60	80~100	4.004	4.404			ISO2X	15.17	15.00	85~100	11010	10.005												
M5×0.8	ISO3X	4.73	4.64	75~95	4.334 4.134	4.134	4.134	4.134	34 4.134		M16×2	ISO3X	15.2	15.09	85~95	14.210	13.835									
	ISO2X	5.60	5.50	80~100	00		5 4 5 0	5 4 5 0	5 4 5 0	5 4 5 0	5 150))		0						ISO2X	15.35	15.23	85~100	00	44.070
IVI6×1	ISO3X	5.64	5.56	80~95	5.153	153 4.917	4.917		M16×1.5	ISO3X	15.43	15.31	80~95	14.676	14.376											

ISO M ISO K **CUTTING TAPS** ISO N ISO S **HOSI** ISO P - ISO M FORMING TAPS ISO N TECHNICAL INFORMATION

ISO P

for Unified Threads

Size	Class	Recommended hole size (mm)		Thread engage- ment ratio ref. Minor diameter of internal threads (2B)			Size	Class	Recommended hole size (mm)		
		Max.	Min.	(Estimation %)	Max.	Min.				Max.	Min.
No.2-56UNC	2BX	2.04	1.96	65~100	1.871	1.695		No.6-40UNF	2BX	3.29	3.19
No.2-64UNF	2BX	2.06	1.98	65~100	1.912	1.756		No.8-32UNC	2BX	3.89	3.78
No.3-48UNC	2BX	X 2.35 2.25		65~100	2.146	1.941	1.941	No.8-36UNF	2BX	3.91	3.81
No.3-56UNF	2BX	2.37	2.29	65~100	2.197	2.025	1	No.10-24UNC	2BX	4.44	4.30
No.4-40UNC	2BX	2.64	2.54	70~100	2.385	2.157		No.10-32UNF	2BX	4.53	4.44
No.4-48UNF	2BX	2.68	2.59	70~100	2.458	2.271		No.12-24UNC	2BX	5.07	4.96
No.5-40UNC	2BX	2.97	2.87	70~100	2.697	2.487	1	No.12-28UNF	2BX	5.13	5.03
No.5-44UNF	2BX	2.99	.99 2.90 70~		2.740	2.551		1/4-20UNC	2BX	5.86	5.73
No.6-32UNC	2BX	3.22	3.11	75~100	2.895	2.642		1/4-28UNF	2BX	6.00	5.91

unit: mm

2.820

3.302

3.404

3.683

3.963

4.344

4.496

4.979

5.360

Thread engage-ment ratio (Estimation %) Max. Min.

3.022

3.530

3.606

3.962

4.165

4.597

4.724

5.257

5.588

70~100

75~100

75~100

75~100

80~100

80~100

80~100

80~100

80~100

for GAS Threads

Sizo	Class	Recommended	Thread engagemen		
JIZE	Class	Max.	Min.	ratio (Estimation %)	
G1/8-28	G6	9.34	9.22	80~100	
G1/4-19	G8	12.64	12.42	80~100	
G3/8-19	G8	16.08	15.91	80~100	

7. Materials used for Cutting Tools

Materials

We have been seeking the best materials used for cutting tools since the company establishment because the performance of tools are depending on the selection of materials used. Major materials used in our company are listed below.

*For product's improvement, material may be changed without notice.

Circumstance of tools' materials

Tensile strength, heat resistance, corrosion resistance and accuracy are the important features required of tool's materials. These requirements have been changing due to miniaturization and lightening of parts.

And manufacturing methods, as well, have been changing because of necessity of economical efficiency such as saving process/cycle time while parts become hard-to-machine type and their hardness increases.

As a result, the demand of industrial tools by users has become very tough.

For example, higher wear resistance and chipping resistance are required in the area of hardness, and heavy cutting process or highspeed cutting are required in the area of cycle time.

Moreover, product accuracy with its rigidity, laborsaving brought by uniformity, and systematic reliability are highly required.

Therefore, technological improvement of tool steels never stops developing so that they satisfy users needs.

O The major materials used for taps are already listed in the chart, but those materials are ready to develop from conventional alloy tool steels and current high speed steel into next generation materials such as cemented carbide and cermet materials.

New materials are developed even in high-speed tool steel area, such as SKH51 and SKH58 from SKH2, and they are moving into high performance materials, such as high vanadium, cobalt, and powder HSS made of high vanadium and high cobalt contents.

- O As the material for round dies, were alloy tool steels mostly used because of the relationship with the use of adjustable round dies. However, for the hard-to-machine material. die material has been shifted into High Speed Steel.
- O Major materials for center drills and centering tools are high speed steel materials, but they have been shifting to cobalt type or even cemented carbide from SKH51.

We keep on seeking to develop our technology to meet user's needs and are trying to find the best materials in collaboration with steel manufacturers.

CUTTING TAPS

SOP

 \leq

TECHNICAL NFORMATION

Classification	Currente e la					Chemical c	omposition				
Classification	Symbols	C	Si	Mn	Р	S	Cr	Mo	W	V	Co
W type HSS	SKH 2	0.73~0.83	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	_	17.20~18.70	1.00~1.20	_
	SKH 3	0.73~0.83	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	_	17.00~19.00	0.80~1.20	4.50~ 5.50
	SKH 4	0.73~0.83	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	—	17.00~19.00	1.00~1.50	9.00~11.00
	SKH10	1.45~1.60	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	_	11.50~13.50	4.20~5.20	4.20~ 5.20
Mo type HSS	SKH51	0.80~0.88	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	1.70~2.10	—
	SKH52	1.00~1.10	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	$5.50\sim~6.50$	5.90~ 6.70	2.30~2.80	_
	SKH53	1.15~1.25	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	2.70~3.20	_
	SKH54	1.25~1.40	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.20~ 5.00	5.20~ 6.00	3.70~4.20	—
	SKH55	0.87~0.95	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	1.70~2.10	4.50~ 5.00
	SKH56	0.85~0.95	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	4.70~ 5.20	5.90~ 6.70	1.70~2.10	7.00~ 9.00
	SKH57	1.20~1.35	≦0.45	≦0.4	≦0.030	≦0.030	3.80~4.50	3.20~ 3.90	9.00~10.00	3.00~3.50	9.50~10.50
	SKH58	0.95~1.05	≦0.7	≦0.4	≦0.030	≦0.030	3.50~4.50	8.20~ 9.20	1.50~ 2.10	1.70~2.20	—
	SKH59	1.05~1.15	≦0.7	≦0.4	≦0.030	≦0.030	3.50~4.50	9.00~10.00	1.20~ 1.90	0.90~1.30	7.50~ 8.50

Chemical composition of the materials specified in JIS

Classification	Symbols	lleare	Cross chart		
Classification		Usage	AISI	VDEH	ISO
W type HSS	SKH 2	Tools for general cutting and other kinds of tools.	T 1	S18-0-1	S1(HS18-0-1)
	SKH 3	Tools for high speed heavy cutting and other kinds of tools.	Τ4	S18-1-2-5	S7(HS18-1-1-5)
	SKH 4	Tools for cutting hard -to-machine materials and other kinds of tools.	Τ5	S18-1-2-10	S6 (HS18-0-1-10)
	SKH10	Tools for cutting ultra hard-to-machine materials and other kinds of tools.	T15	_	S9(HS12-1-5-5)
Mo type HSS	SKH51	General cutting tools from which toughness is particularly required, and other kinds of tools.	M 2	S6-5-2	S4(HS6-5-2)
	SKH52	Tools for cutting high hardness material from which comparatively high toughness is required and other kinds of tools.	M 3-1	_	—
	SKH53		M 3-2	S6-5-3	S5(HS6-5-3)
	SKH54	Tools for cutting ultra hard-to-machine materials and other kinds of tools.	M 4	_	-
	SKH55	High speed cutting tools from which comparatively high	M35	S6-5-2-5	S8(HS6-5-2-5)
	SKH56	toughness is required and other kinds of tools.	M36	_	_
	SKH57	Tools for cutting ultra hard-to-machine materials and other kinds of tools.	_	S10-4-3-10	S10(HS10-4-3-10)
	SKH58	General cutting tools from which toughness is particularly required, and other kinds of tools.	M 7	S2-9-2	S2(HS2-9-2)
	SKH59	High speed heavy cutting tools from which comparatively high toughness is required, and other kinds of tools.	M42	S2-10-1-8	S11(HS2-9-1-8)

The standard of HSS material is specified in JIS. But there are many HSS materials which standard is not specified in JIS. Recently even the kind of HSS-P is getting wider and various. Besides, SKH10, SKH53, SKH57 and their equivalents, such Hi vanadium/ hi cobalt material as contains 4-12% vanadium and 8-11% cobalt is now being manufactured. Material engineering will be developed rapidly in the future. Under such situation, there can be many cases where JIS symbols are not used, and the use of larger classification and their symbols is getting popular.

8. Surface Treatment

The best surface treatment is applied to each tap depending on the tapping purpose. Characteristics and effectiveness of surface treatment are introduced at next section.

Oxidizing

- O This treatment was processed by using HOMO furnace being made by LEED AND NORTHUP company USA in 1938, and it is called HOMO treatment. This treatment is also called vapor treatment and steam treatment. Through this treatment, Fe3O4 layer of blue black color is produced over the tool surface.
- O Oxidization treatment produces porous layer on tool's surface. This porous layer works as oil pocket to reduce friction, to avoid welding and to improve the surface roughness of internal screw. Moreover, longer tool life is expected because the treatment reduces the remaining stress of HSS tools.
- O This treatment does not increase the hardness on tool surface. Using the furnace of YAMAWA original design and choosing the proper treatment time, we have marked good result of oxidizing for YAMAWA HSS tools.
- O Stainless steel and low carbon steel are the materials that are easy to get welding. We are applying this treatment to the special purpose taps for these materials to get good result. Further due to the reduction of friction force, this treatment has good result for wide range of steel type material.
- O We combine oxidizing with nitriding for the taps designed for thermal refined steels of high carbon steels and alloy steels. This double treatment wins good reputation of the market.

Thickness of oxide layer and the time of treatment

1500 Cutting condition 1500 Tap: SU-SP/M8×1.25/P2 Material: SUS304 (165~171HB) Hole size: φ6.8mm 1000 Tapping Length: 12mm (through hole) 1000 Cutting oil: Insoluble oil 500 SU-SP design_SU-SP 500 SU-SP design_SU-SP 500 SU-SP design_SU-SP

Comparison between bright and oxide treated

ISO P

Nitriding

- O In this treatment, we have Nitrogen and Carbon soak into the surface of HSS tools, and react with chemical of HSS material to produce hard nitride. There are 3 methods in the treatment, composition gas method, salt bath nitride method and ion nitride method.
- O Salt bath nitride treatment is shifted into gas nitride treatment method because of cyanic environmental pollution.
- O The temperature of treatment is 500 to 550 degree. Hardness and depth of the treatment can be controlled by active nitrogen concentration and reaction time.
- O The high hardness of tool surface minimizes chemical attraction. Result is less welding and friction reduction. Great improvement is expected in tool's performance.
- O We have found out the best combinations of hardness and toughness through our treatment technology
- O The nitride treatment will be widely applicable to the taps for such workpiece materials as gray cast irons, special cast irons, aluminum diecastings with higher silicone content, copper alloys, and resinoids (plastics). These materials produce small segmental chips and are very abrasive.
- O We combine nitrogen and oxidizing for comparatively sticky material such as thermal refined steels of high carbon steel and alloy steel. This double treatment improves the chipping resistance and have won good reputation.

Depth and hardness of Nitride Surface Treatment

Comparison between bright and nitride treated

Hard coating

High speed cutting and hard-to-machine material cutting are the recent technology. To meet this tendency, the hard layer coating by vapor deposition over tool's surface has become popular. There are two coating methods, CVD and PVD. PVD is mainly used for tap.

Physical Vapor Deposition

The features and classification of coating

- O Inside of the container of high vacuum, are vapor deposition materials heated. And we vapor-deposit particles ionized by electric discharge on tool's surface.
- O Due to its low reaction temperature (lower than 500°C), PVD makes little change in shape and hardness of HSS tools.

Classification	Titanium nitride (TiN)	Titanium carbonitride (TiCN)	Titanium nitride aluminum (TiAIN)	Chromium nitride (CrN)
Vickers Hardness	2000~2400	3000~3500	2300~2700	1800~2200
Wear resistance	Good	Excellent	Excellent	Normal
Welding resistance	Good	Good	Good	Excellent
Heat resistance	Good	Normal	Excellent	Excellent
Acid resistance	Good	Normal	Excellent	Good
Slippery	Good	Excellent	Good	Excellent
Color	Gold	Blue Dray Violet	Violet	Silver
Workpiece materials	Carbon Steels Aluminum forging	Carbon Steels Hard Steels Stainless Steels Aluminum forging Cast Irons Brass • Bronze	Stainless Steels Cast Irons	Copper

Note: Evaluation (tri-level) of characteristic features is just comparative of these four coatings, TiN, TiCN, TiAlN, and CrN, in the table. These coatings have great advantages of wear resistance, welding resistance, and friction reduction. The values of vickers hardness are also higher than the heat treatment or nitriding of HSS cutting tools from the table.

Comparison between bright and TiCN coated

ISO S

SOH

ISO P

9. Carbide Taps

Technological advances in CNC machines and machining centers, and machining automation have helped improve the overall tapping process.

YAMAWA was quick to respond to evolving customer needs resulting from technological innovations.

We can now recommend carbide taps, which provide tremendous improvements in mass-production and in reducing costs. It is estimated that carbide taps have 50 times more durability than HSS taps in tapping, when used properly. YAMAWA engineering believes the best carbide materials suitable for taps are ultramicro grain tungsten carbide, or ultrafine grain carbide made of high cobalt.

Features of Carbide Taps

(1). Excellent durability with high toughness is obtainable.

- (2). High anti-friction features are provided by the material's high hardness and comparatively high toughness, which ultimately results in a longer tool life.
- (3). Specially designed cutting angle and other dimensional features produce the internal threads with high tolerance accuracy and consistency.
- (4). Under certain tapping condition, YAMAWA carbide taps can be used even for tapping hard-to-machine materials.

Points to note during tapping with Carbide taps:

- (1). Machine vibration, or run-out, can lead to Carbide tap chipping and premature failure. Tapping vibrations need to be kept to a minimum.
- (2). Tap holder should be a rigid type for a Carbide tap. A holder attachment with axial float, or radial float tends to promote Carbide tap breakage and chipping.
- (3). The hole to be tapped must be located correctly and on center; any centering off or non-straight drilled hole tends to cause Carbide tap breakage due to deflection. Select correct hole depth with respect to tapping length (for blind hole only). It is especially important to prevent tap damage from chip packing and bottom thrusting in blind hole tapping.
- (4). Cutting lubricants select grade of lubricant. Improper flow of coolant, or lack of sufficient amount of lubricant, or cooling can increase the likelihood of Carbide tap chipping due to work material welding. Caution must be taken during dry machining to prevent chip welding to the tap.
- (5). Work pieces we provide Carbide taps with increased toughness, but Carbide taps are inferior to High Speed Steel (HSS) in the area of toughness. As a matter of fact Carbide taps have limited application due to this difference in toughness to HSS.

Work Materials		Cutting Speed (m/min)	Cutting Fluid (General recommendation)
	Ordinary	15~25	Dry, light oil, water soluble oil
Cast Iron	Nodular Graphite	10~20	Light oil, water soluble oil
	Malleable	10~20	Water soluble oil
Aluminum		20~40	Light oil, water soluble oil
Copper		15~30	Light oil, water soluble oil
Copper Alloy	Brass	Brass 20~30	Light oil, water soluble oil
соррег Аноу	Phosphor Bronze	15~30	Light oil, water soluble oil
Die Cast	Aluminum Alloy	15~25	Mixed oil of lard oil and kerosene
Die-Cast	Zinc Alloy	12~20	Mixed oil of lard oil and kerosene
Diastic	Thermosetting	15~25	Water soluble oil, air
Flastic	Thermo Plastic	15~25	Water soluble oil, air
Hard Rubber		15~30	Dry, air

Commonly used materials and cutting conditions

Note: The table shows only general conditions. As for actual cutting operation, please consider the following points: (1) Machine Capacity, (2) Work piece(s), (3) Work Shape, (4) Setup (5) other factors.

ISO P

ISO M

ISO K

ISO N

ISO S

ISO H

ISO P - ISO M

ISO N

TECHNICAL INFORMATION

FORMING TAPS

CUTTING TAPS

Toughness and Hardness of Cemented Carbide and HSS

Chamfer wear and number of holes of Carbide taps and HSS taps

Carbide Tap examples and comparison of tool life

Size		M2×0.4	M8×1.25	M6×1	M8×1.25	M10×1.25
Workpiece Part's na	Material	Plastic with glass fibre	ADC12	FC250	FC250	FC250
	Part's name	Electric Parts	Car Parts	Electric Parts	Car Parts	Car Parts
Thread	Tapping Hole. condition	arphi 1.6 Through	arphi6.7 Blind	arphi 5.0 Blind	φ 6.7 Blind	arphi8.7 Blind
Condition Tappi	Tapping Length	4mm	18mm	10mm	16mm	18mm
Condition of Use	Machine	Special Machine	Special Machine	4 spindle Machine	Multi Spindle Machine	Special Machine
	Cutting Speed	6.3m/min	8.5m/min	8m/min	6m/min	5.7m/min
	Fluid	Dry	Water soluble	Water soluble	Water soluble	Water soluble
	Carbide Tap	10.000	75.400	53.000	18.860	38.500
Number of Holes	HSS Tap	200	1.000	1.000	300	500
	Comparison of Life	50	75.4	53	62.9	77

Note: In all situations, HSS taps being used are standard ones. Carbide taps, when used properly, bring out a long tool life. These data have come from end users of carbide taps.

10. Selecting different tap holder combinations by machine feed system

The function of machine feed systems

Fully synchronous feed (Rigid) tapping system

Spindle revolution and machine feed are synchronized, a perfect thread lead and feed per revolution are realized.

Feed by lead screws

A better-feed condition is realized because the tap is fed by a master lead screw shaft that has the same thread lead as this tap.

Feed by gear

The tap is fed at the same thread lead by a combinations of gears. This creates a better-feed to thread lead condition.

Asynchronous feed system

Best used when the spindle rotation and the machine feed are set independently, especially, if the machine feed value cannot be accurately predicted to be that of the tap thread lead.

Hydraulic or Pneumatic pressure feed system

Feed is controlled by a pressure regulation system which normally results in an inaccurate feed per revolution compared to the tap thread lead.

Manual feed

Feed is controlled by operator which is difficult to keep a stable amount of feed per revolution.

Holders aspects

Characteristics of tap self-guiding behavior

ISO P

11. The mechanism for a tap to cut oversize on an internal thread

2. Using a tap not suitable for the operation or a tap with dull — Ver-cutting caused by galling and excess cutting cutting edge may cause galling and result in over-cutting.

12. Symbols for Standard Threads

Japan

Thread symbols	Kinds of threads	Related Standards
М	Metric screw threads	JIS B 0205-1~0205-4
S	Miniature screw threads	JIS B 0201
UNC	Unified threads, Coarse series	JIS B 0206
UNF	Unified threads, Fine series	JIS B 0208
Tr	Metric Trapezoidal screw threads	JIS B 0216
R	Taper external pipe threads	JIS B 0203 (JIS main book)
Rc	Taper internal pipe threads	JIS B 0203 (JIS main book)
Rp	Parallel internal pipe threads	JIS B 0203 (JIS main book)
G	Parallel pipe threads	JIS B 0202 (JIS main book)
PF	Parallel pipe threads	JIS B 0202 (JIS Appendix)
PT	Taper pipe threads	JIS B 0203 (JIS Appendix)
PS	Parallel internal pipe threads	JIS B 0203 (JIS Appendix)
CTC	Screw threads for rigid metal thin-walled conduit and fitting	JIS C 8305
CTG	Screw threads for rigid metal thick-walled conduit and fitting	JIS C 8305
BC	Cycle threads	JIS B 0225
SM	Screw threads for sewing machine	JIS B 0226 (2001.2.20 repeal)
E	Electric socket and lamp-base threads	JIS C 7709
V	Tire valve threads of automobile	JIS D 4207
CTV	Tire valve threads of cycle	JIS D 9422

Thread symbols	Kinds of threads	Related Standards
М	ISO Metric threads	ISO 261
S	ISO Miniature screw threads	ISO 1501
Tr	ISO Metric trapezoidal screw threads	ISO 2902
UNC	ISO Unified threads, coarse series	ISO 263
UNF	ISO Unified threads, fine series	ISO 263
UNEF	ISO Unified threads, extra fine series	ISO 263
UN	ISO Unified threads, constant pitch series	ISO 263
UNJC	Aerospace - UNJ threads (coarse)	ISO 3161
UNJF	Aerospace - UNJ threads (fine)	ISO 3161
UNJEF	Aerospace - UNJ threads (extra fine)	ISO 3161
UNJ	Aerospace - UNJ threads (constant pitch series)	ISO 3161
MJ	Aerospace - MJ threads	ISO 5855
R	Taper external pipe threads	ISO 7/1
Rc	Taper internal pipe threads	ISO 7/1
Rp	Parallel internal pipe threads	ISO 7/1
G	Parallel pipe threads	ISO 228/1
GL	Glass container threads	ISO 1115
V	Tire valve threads	ISO 4570/1~3

America

Thread symbols	Kinds of threads	Related Standards
UN	Unified inch screw threads	ANSI B 1.1
UNC/UNRC	Unified coarse thread series	ANSI B 1.1
UNF/UNRF	Unified fine thread series	ANSI B 1.1
UNEF/UNREF	Unified extra-fine thread series	ANSI B 1.1
4UN/4UNR	Unified constant-pitch series with 4-threads	ANSI B 1.1
6UN/6UNR	Unified constant-pitch series with 6-threads	ANSI B 1.1
8UN/8UNR	Unified constant-pitch series with 8-threads	ANSI B 1.1
12UN/12UNR	Unified constant-pitch series with 12-threads	ANSI B 1.1
16UN/16UNR	Unified constant-pitch series with 16-threads	ANSI B 1.1
20UN/20UNR	Unified constant-pitch series with 20-threads	ANSI B 1.1
28UN/28UNR	Unified constant-pitch series with 28-threads	ANSI B 1.1
32UN/32UNR	Unified constant-pitch series with 32-threads	ANSI B 1.1
UNS/UNRS	Unified threads of special diameters, pitches and lengths of engagement	ANSI B 1.1
NR	American National thread with a 0.108p to 0.144p controlled root radius	MIL-B-7838
Acme	Acme screw threads	ANSI B 1.5
Stub-Acme	Stub Acme screw threads	ANSI B 1.8
Butt	Buttress inch screw threads	ANSI B 1.9
UNM	Unified miniature thread series	ANSI B 1.10
NC5	Class 5 interference-fit thread	ANSI B 1.12
NPT	American Standard taper pipe threads for general use	ANSI/ASME B 1.20.1
NPTR	American Standard taper pipe threads for railing joints	ANSI/ASME B 1.20.1
NPSC	American Standard straight pipe thread in pipe couplings	ANSI/ASME B 1.20.1
NPSL	American Standard straight pipe threads for loose-fitting mechanical joints with locknuts	ANSI/ASME B 1.20.1
NPSM	American Standard straight pipe threads for free-fitting mechanical joints for fixture	ANSI/ASME B 1.20.1
NPSH	American Standard straight pipe threads for loose-fitting mechanical joints for hose couplings	ANSI/ASME B 1.20.1
NPTF	Dryseal American Standard taper pipe threads	ANSI B 1.20.3, 1.20.4
F-PTF	Dryseal fine taper pipe threads series	ANSI B 1.20.3, 1.20.4
PTF-SAE SHORT	Dryseal SAE short taper pipe threads	ANSI B 1.20.3, 1.20.4
PTF-SPL SHORT	Dryseal special short taper pipe threads	ANSI B 1.20.3, 1.20.4
PTF-SPL EXTRA SHORT	Dryseal special extra short taper pipe threads	ANSI B 1.20.3, 1.20.4
SPL-PTF	Dryseal special taper pipe threads	ANSI B 1.20.3, 1.20.4
NPSI	Dryseal American Standard intermediate internal straight pipe threads	ANSI B 1.20.3, 1.20.4
NPSF	Dryseal American Standard fuel internal straight pipe threads	ANSI B 1.20.3, 1.20.4
ANPT	Aeronautical National Form taper pipe threads	MIL-P-7150
NGO	National gas outlet threads	ANSI B 57.1
NGS	National gas straight threads	ANSI B 57.1
NGT	National gas taper threads	ANSI B 57.1
SGT	Special gas taper threads	ANSI B 57.1
NH	Hose coupling and firehose coupling threads	USAS B 2.4
NHR	Hose coupling and firehose coupling threads	USAS B 2.4
NPSH	Hose coupling and firehose coupling threads	USAS B 2.4
AMO	American Standard microscope objective threads	ANSI B 1.11
British

Thread symbols	Kinds of threads	Related Standards
UNS	Unified special series	BS 1580
B.S.W.	British Standard Whitworth coarse threads	BS 84
B.S.F.	British Standard fine threads	BS 84
BSP	British Standard pipe thread (corresponding to R, Rc, Rp of ISO)	BS 21,2779
B.A.	B.AScrew threads	BS 93
Acme	General purpose, Acme screw threads	BS 1104
Buttress	Buttress threads	BS 1657
BSC	Cycle threads	BS 811
BSMO	Microscope objective threads	BS 3569
E	Edison screw threads	BS 5042

German

Thread symbols	Kinds of threads	Related Standards
GL	Glass containers thread	DIN 168
S	Buttress thread	DIN 513,2781,20401
Rd	Knuckle thread	DIN 262,3182,7273,15403,20400
W	Whitworth-gewinde	DIN 168,477,6630,49301
KS,KT	Screw siles for packages made of Plastics	DIN 6063
E	Edison screw thread	DIN 40400
Pg	Steel condiut thread	DIN 40430
Vg	Automobil tire valve thread	DIN 7756
Gf	Thread for freezing pipes	DIN 4930
Gg	Threads for drill pipe	DIN 4941,20314
HA	Thread for bone screws and nuts	DIN 58810
FG	Bicycle threads	DIN 79012

Old-new code cross reference

CODE		ALTERNATIVE	Cat
OLD	NEW		page
0021	CD-A		184
0021TI			
0023	CD-R		185
0023TI			
0941	DPO		178
0943	DPO		178
0947	DPO		181
0949	DPO		180
1330 INIX	5.0	ZELX NI PO	246
1330NIX			130
1340 102			215
134000		ZELA NI OF	213
1041 101	ZEIN-D		90
		ZELX II SP	213
1341NI	ZEI-B		92
1349JNI		ZELX TI LHSP	222
1349NI		ZELX TI LHSP	222
1355TC	OL+RZ		171
1356TC	HP+RZ/HP-RZ		172
1430JNX		ZELX NI PO	246
1430NX	ZEN-P		130
1440JOX		ZELX NI SP	215
1440OX	ZEN-B		90
1441JNI		ZELX TI SP	213
1441NI	ZET-B		92
1449JNI		ZELX TI LHSP	222
1449NI		ZELX TI LHSP	222
1630NX	7EN-P		130
16400X	ZEN-B		89
16/100	ZET-B		01
1641TC			51
164000			100
1640TC			109
170011			100
1730INX	ZEN-P		130
1740OX	ZEN-B		89
1741NI	ZEI-B		91
1741IC			
1749NI	ZET-P		109
1749TC			
1830NX	ZEN-P		130
1840OX	ZEN-B		89
1841NI	ZET-B		91
1841TC			
1849NI	ZET-P		109
1849TC			
1856TC	HP-RZ		172
2620	EH-HT		145
2630	EH-PO		126
2720	EH-HT		145
2730	EH-PO		126
2820	EH-HT		145
2830	EH-PO		126
2000			146
2920			140
3626	OT FO		158
3726	CI-FC		158
5980	Y831 BR NPT		305

СС	DDE	ALTERNATIVE	Cat.
OLD	NEW		page
5984OX	Y831 INT NPT		306
5985OX		ZELX SS NPT	302
5990	Y831 NPTF		308
6000			
6110	stock available - n	ot listed in the cata	logue
6110F	HT F		135
6110M	HT M		135
6110V	HT V		135
6211	available on reque	st	
6211F	HT F		135
6211V	HT V		135
6310	available on reque	st	1
6310F	HT F		142
6310M	HT M		142
6310V	HT V		142
6412	stock available - n	ot listed in the cata	logue
6412F	HT F		143
6412V	HT V		143
7130			
7140OX			
7530			
7540OX			
8120C			
8120D			
8520C			
8520D			
9020	HT		143
9320	HT		141
9330	PO		117
9335OX	PO-VA		128
9340	SP		55
9345OX	SP-VA		80
9350NI	N+RS / N-RS		169
9350TI		HP+RZ/HP-RZ	172
9351OX	N+RZ/N-RZ		170
9352NI		N+RS/N-RS	169
9352TI		OL+RZ	171
9353	R-D		166
9353TC		HP+RZ/HP-RZ	172
9353TI	R-D Coating		167
9354 6G		HP+RZ/HP-RZ	172
9354TI 6G		HP+RZ/HP-RZ	172
9420	HT		141
9430	PO		117
9435OX	PO-VA		128
9440	SP		55
9445OX	SP-VA		80
9530			
9540OX			
9620	HI		135
9623NI	LA-HT		153
9623 FC		AXE-HT	155
9626NI	GG-HT		147
9626NIOH	GG-HT-OH		151
9626TC	GG-HT Coating		149

Items in red are exhausting, recommended alternative code indicated when available.

CC	DE	ALTERNATIVE	Cat.
OLD	NEW		page
9626TCOH	GG-HT-OH Coating		152
9630	PO		115
963010	PO		115
96306G	PO		115
9630OH		HDISL	111
9630OX	PO OX		122
9630TC		PO Coating	119
9630TCOH		HDISL	111
9630TH		PO Coating	119
9630TI	PO Coating		119
9634	LA-HT		153
9634TC		AXE-HT	155
9635OX	PO-VA		127
9635TC	PO-VA TICN		129
9640	SP		53
964005	SP		53
964010	SP		53
96406G	SP		53
9640LH	SP LH		64
9640OH		HFIHS	94
9640TCOH		HFIHS	94
9640TH		SP Coating	57
9640TI	SP Coating		57
9641	LO-SP		70
9641OX	LO-SP OX		73
9641TC			
9641TI			
9642		AL-SP	69
9642.2F		AL-SP	69
9643NI	AL-SP		69
9643TC			
9644OX	SU2-SP		87
9645EOX		SP-BLF 1.5P	83
96450X	SP-VA		79
96450X6G	SP-VA		79
9645TC	SP-VA TICN		82
9646OX	F-SP		77
9647	SP-BLF		83
9647F	SP-BLE 1 5P		83
96470X	SP-BLE OX		86
9647TC		SP-BLE Coating	85
9647TI	SP-BLE Coating	or ber oodding	85
9648OX	PH-SP		75
9665VP	SI +VA		102
9666TI			107
179999			108
9685VP	SP+VA		78
9686TI	AU+SP		66
9686TI	AUXSP		67
9720	нт		135
9723NI	I A-HT		153
9723TC		ΔΧΕ-ΗΤ	155
97261	GG-HT		147
	GG-HT-OH		151
9726TC	GG-HT Coating		149

CODE		ALTERNATIVE	Cat.
OLD	NEW		page
9726TCOH	GG-HT-OH		152
9730	PO		115
973010	PO		115
973066	PO		115
97300H			111
072000			100
9730UA	FUUX		110
9730TCOH			113
0720TH			110
072011	DO Coating	FUV	110
0724			152
9734 0794TC			155
973410		AVE-UI	107
97350A			127
973310	FO-VA HON		50
9740	SP		53
974005	SP		53
974010	SP		53
97406G	SP		53
9740LH	SP LH		64
9740OH		HFIHS	94
9740TCOH		HFIHS	94
9740TH		SP Coating	57
9740TI	SP Coating		57
9741	LO-SP		70
9741OX	LO-SP OX		73
9741TC			
9741TI			
9743NI	AL-SP		69
9743TC			
9744OX	SU2-SP		87
9745EOX		SP-BLF 1.5P	83
9745OX	SP-VA		79
97450X6G	SP-VA		79
9745TC	SP-VA TICN		82
9746OX	SP-NW		77
9747	SP-BLF		83
9747E	SP-BLF 1.5P		83
9747OX	SP-BLF OX		86
9747TC		SP-BLF Coating	85
9747TI	SP-BLF Coating		85
9748OX	PH-SP		75
9820	НТ		135
9826NI	GG-HT		147
9826NIOH	GG-HT-OH		151
9826TC	GG-HT Coating		149
9826TCOH	GG-HT-OH Coating		152
9830	PO		115
9830TC		PO Coating	119
9830TH		PO Coating	119
9830TI	PO Coating	5	119
9835OX	PO-VA		127
9840	SP		53
98400X	SP OX		60
9840TC		SP Coating	58
00-010		o. oouing	00

Items in red are exhausting, recommended alternative code indicated when available.

CODE		ALTERNATIVE	Cat	
OLD	NEW		page	
9840TH		SP Coating	58	
9840TI	SP Coating		58	
9841	LO-SP		70	
9841OX	LO-SP OX		73	
9841TC				
9841TI				
9845OX	SP-VA		80	
9848OX	PH-SP		75	
9920	HT		143	
9926NI	GG-HT		148	
9926TC	GG-HT Coating		150	
9930	PO		118	
9930OX	PO OX		125	
9930TC		PO Coating	120	
9930TI	PO Coating		120	
9940	SP		56	
9940OX	SP OX		63	
9940TC		SP Coating	58	
9940TI	SP Coating		58	
9941	LO-SP		71	
9941OX	LO-SP OX		74	
9941TC				
9941TI				
9944OX	SU2-SP		87	
9945OX	SP-VA		81	
9948OX	PH-SP		76	
9953	R-D		166	
9953TI	R-D Coating		168	
AR-D-LH		DLH	621	
CD-S-L	CD-SL		647	
CD-S-XL	CD-SL		647	
CS-Q	CS-Q		692	
CS-QM	CS-QM		693	
DT-OX				
EH-CT	EH-CT		161	
F-SL	F-SL		110	
F-SP	F-SP		93	
HDASP	HDASP		99	
HDISL	HDISL		111	

СС	DDE	ALTERNATIVE	Cat.
OLD	NEW		page
HDISP	HDISP		98
HFACT-B	HFACT-B		491
HFACT-P	HFACT-P		490
HFAHS	HFAHS		96
HFASP	HFASP		97
HFICT-B	HFICT-B		493
HFICT-P	HFICT-P		492
HFIHS	HFIHS		94
HFISP	HFISP		95
HP-RZ	HP-RZ		514~516
I-HT 2P	I-HT 2P		427
I-HT 5P	I-HT 5P		427
I-PO	I-PO		395
I-SP	I-SP		319
LS-HT	LS-HT		446
LS-N-RS	LS-N-RS		508
LS-PF	LS-PF		585
LS-PO	LS-PO		410
LS-SP	LS-SP		343
MC-AD-CT	MC-AD-CT		487
MC-HLC	MC-HLC		607
NC-SD		NC-SD V	691
NC-SD-TC		NC-SD V	691
N-PO BSW	PO		401
N-SP BSW	SP		326
OL-RZ	OL+RZ		512
PE-Q	PE-Q		681
PE-Q-V	PE-Q-V		682
PE-S	PE-S		685
PE-S-V	PE-S-V		686
PS	PS		576
PS-L	LS-PS		578
PS-XL	LS-PS		578
PT	PT		551
PT-L	LS-PT		556
PT-XL	LS-PT		556
STI-HT	AL-HT (STI)		467
STI-SP	AL-SP (STI)		367
UH-CT	UH-CT		163

Items in red are exhausting, recommended alternative code indicated when available.

(page numbers refer to the 2016-17 Yamawa General Catalogue)

Spiral flut	ed taps			
ISP	YAMAWA Hand or drilling machine application	DIN ANSI JIS	188 318	LO-SP
SP	General purpose	DIN ANSI JIS	52 189 320	LS-LO-S
SP 1.5P	General purpose, short chamfer	DIN ANSI JIS	328	LO-SP
+SP	General purpose, Version Up	DIN ANSI JIS	330	LO-SP
XSP	General purpose, Synchro	DIN ANSI JIS	332	AU+SP
SP LH	General purpose, left hand thread	DIN ANSI JIS	64 337	AUXSE
LS-SP	General purpose, long shank	DIN ANSI JIS	343	E-SP
MC-SP	General purpose, long shank, central OH	DIN ANSI JIS	371	HC+SF HC-SP
LS-SP LH	General purpose, long shank, left hand thread	DIN ANSI JIS	347	HC+SP HC-SP (
SP OX	General purpose	DIN ANSI JIS	59 193 333	PH-SP
+SP OX	General purpose, Version Up	DIN ANSI JIS	336	SP-VA
SP	VAMAWA UN8, alloy steel	DIN ANSI JIS	196	SP+VA
SP (Coating)	General purpose	DIN ANSI JIS	57 339	SUXSF
LS-SP V	General purpose, long shank	DIN ANSI JIS	348	ZELX S SP 6"
SP-BLF	General purpose, blind hole >2xD	DIN ANSI JIS	83	SP-VA (Coatin
SP-BLF OX	General purpose, blind hole >2xD	DIN ANSI JIS	86	SU2-S
SP-BLF (Coating)	General purpose, blind hole >2xD	DIN ANSI JIS	85	AL+SP AL-SP

	VARANIA	DIN	
LO-SP		ANSI	
	General purpose	JIS	369
	·	DIN	
IS-IO-SP	YAMAWA	ANSI	
	General purpose, long shank	JIS	370
	YAMAWA	DIN	72
LO-SP OX	General nurnose		
	General pulpose	013	
	YAMAWA	DIN	
LO-SP		ANSI	197
	UN8, alloy steel	JIS	
		DIN	65
AU+SP	TAMAWA	ANSI	198
	Universal, high performance	JIS	340
		DIN	(7
ΛΗΥΟΡ	AMAMAY	ANSI	07
AUXSP	Universal high performance Synchro	JIS	342
	oniversal, ingli performance, synchro		0.2
	YAMAWA	DIN	77
E-SP		ANSI	
	For soft structural steel	JIS	361
		DIN	
	TAMAWA	ANSI	
HC-2P	For high carbon steel	JIS	363
		DIN	
HC+SP OX	YAMAWA	ANSI	
HC-SP OX	For high carbon steel	JIS	365
	5		
	YAMAWA	DIN	75
PH-SP	For hard steel < 38HBC		
	Tor hard steer < sorme	013	
	VAMAWA	DIN	79
SP-VA		ANSI	199
	For stainless steel	JIS	350
		DIN	78
SP+VA	YAMAWA	ANSI	
	For stainless steel, Version Up	JIS	350
		DIM	
SUIVED	YAMAWA	ANSI	
JUNJF	For stainless steel, Synchro	JIS	355
ZELX SS		DIN	
SP 6"	For stainless steel long shark	ANSI	204
	TOT STUTTIESS STEEL, IONY STUTIK	010	
SP-\/A	MARANIA	DIN	82
(Coating)	17 III AND AND A	ANSI	
(Coating)	For stainless steel	JIS	
		DIN	87 _
SI12-SP	YAMAWA	ANSI	
302-51	For stainless steel, Duplex, Synchro	JIS	356
		DIC	
AL+SP	ALLE - MAMANA		68 205
AL-SP	For wrought or die-cast aluminium		205
		and a fill	the second se

Central OH = for blind hole with through coolant hole Radial OH = for through hole with radial coolant hole

	Vallawa	DIN	
AL-SP 1.5P	Tamana	ANSI	
	For Aluminium, short chamfer	JIS	368
		DIN	
7FL Χ ΔΙ Ϛ ϚΡ	VAMAWA	ANSI	207
	For die-cast Aluminium	JIS	
	YAMAWA	DIN	89
ZEN-B	For Nickel have allow	ANSI	215
	FOR NICKEI Dase alloy	JI5	3/3
	P 1.5P For Aluminium, short chamfer JIS 368 ALS SP For die-cast Aluminium -B For Nickel base alloy -B For Nickel base alloy -B For Nickel base alloy JIS 373 -B For Titanium alloy JIS 372 DIN 91 ANSI 215 For Nickel base alloy JIS 372 DIN 91 ANSI 213 For Titanium alloy JIS 372 DIN 93 ANSI 213 S72 DIN 93 ANSI 213 S72 DIN 93 ANSI 220 Fast - high speed, Synchro JIS 374 HS Ultra Fast, ISO P, vertical, central OH, Synchro JIS 376 ANSI Ultra Fast, ISO P, horizontal, central OH, Synchro JIS 377 SP Ultra Fast, ISO N, vertical, central OH, Synchro JIS 377 SP Ultra Fast, ISO N, vertical, central OH, Synchro JIS 377 DIN 95 ANSI Ultra Fast, ISO N, vertical, central OH, Synchro JIS 377 DIN 96 ANSI Ultra Fast, ISO N, vertical, central OH, Synchro JIS 377 DIN 97 ANSI Ultra Fast, ISO N, horizontal, central OH, Synchro JIS 377 DIN 97 ANSI Ultra Fast, ISO N, horizontal, central OH, Synchro JIS 377 DIN 97 ANSI Ultra Fast, ISO N, horizontal, central OH, Synchro JIS 377 DIN 97 ANSI Ultra Fast, ISO N, horizontal, central OH, Synchro JIS 377 DIN 98 ANSI DIN 98 ANSI JIN 98 ANSI JIS 379		
7FT-B		ANSI	213
	For Titanium alloy	JIS	372
		DIN	0.2
г ср	YAMAWA		93
F-SP	East high speed Synchro		220
Fast - high speed, Synchro	Tast - high speed, synchio	010	574
	VARIANIA	DIN	94
HFIHS		ANSI	
	Ultra Fast, ISO P, vertical, central OH, Synchro	JIS	375
		DIN	05
		ANSI	35
пгізг	Liltra Fast ISO P horizontal central OH Synchro	JIS	376
		0.0	570
	AND	DIN	96
HFAHS	TANAAAA		
	Ultra Fast, ISO N, vertical, central OH, Synchro	JIS	377
		DIN	97
ΗΕΔΟΡ	YAMAWA	ANSI	
	Ultra Fast, ISO N, horizontal, central OH, Synchro	JIS	368 207 89 215 373 91 213 372 93 220 374 93 220 374 93 220 374 93 220 372 93 372 93 375 95 376 95 97 377 97 97 377 97 98 377 98 98 379 99 99 99
	YANAWA	DIN	98
HDISP	Drutemainer Staal eentrel Old Surghre	ANSI	
	Dry tapping, Steel, central OH, Synchro	JIS	379
		DIN	99
HDASP	YAMAWA	ANSI	
	Dry tapping, Aluminium, central OH, Synchro	JIS	380

Left hand spiral taps for through hole

Central OH = for blind hole with through coolant hole Radial OH = for through hole with radial coolant hole

(page numbers refer to the 2016-17 Yamawa General Catalogue)

Spiral poi	nted taps		
	YAMAWA	DIN	
I-PO	Hand and drilling machine application	ANSI JIS	228 394
		0.0	
		ANSI	114 229
	General purpose	JIS	397
		DIN	
+PO		ANSI	
	General purpose, Version Up	JIS	403
	YAMAWA	DIN	
POLH	General purpose left hand thread	JIS	407
			107
	YAMAWA		
L3-PU	General purpose, long shank	JIS	
		DIN	
MC-PO	YAMAWA	ANSI	
	General purpose, long shank, radial OH	JIS	422
		DIN	121
PO OX	YAMAWA	ANSI	232
	General purpose	JIS	405
	YAMAWA	DIN	
+PO OX		ANSI	100
	General purpose, version Op	JIS	406
PO		DIN	119
(Coating)	General purpose	JIS	409
,			
	YAMAWA	DIN	
LJ-PU V	General purpose, long shank	JIS	
		DIN	
HC+PO	YAMAWA	ANSI	
HC-PU	For high carbon steel	JIS	420
		DIN	126
EH-PO		ANSI	
	For hard steel <45HKC	JIS	423
	YAMAWA	DIN	127
PO-VA	For stainless steel	ANSI JIS	235 415
			115
ZELX SS		DIN	239
PO 6″	For stainless steel, long shank	JIS	259
		DIN	120
PO-VA		ANSI	
(Coating)	For stainless steel	JIS	
		DIN	
ZELX AL PO	WAMAWA	ANSI	240
	For Aluminium	JIS	
		DIN	130
ZEN-P		ANSI	246
	For Nickel base alloy	JIS	424

Hand and fluted tap	machine straight		
	YaMawa	DIN	134
HT	Taps for hand set 5 M V	ANSI	
		010	
	YAMAWA	DIN	
I-HT		ANSI	242
	Hand and drilling machine application	JIS	426
		DIN	134
HT	TAMAWA	ANSI	254
	General purpose	JIS	428
		DIN	
нтін	YAMAWA	ANSI	
	General purpose, left hand thread	JIS	443
		DIN	
іс шт	YAMAWA		
	General purpose, long shank	JIS	446
	VAMAWA	DIN	
LS-HI LH	Concernal numbers long chank loft hand thread	ANSI	45.4
	General purpose, long shank, left hand thread	115	454
		DIN	
MC-HT	·	ANSI	
	General purpose, long shank, central and radial OH	JIS	471
		DIN	
HT OX	YAMAWA	ANSI	259
	General purpose	JIS	
		DIN	
	YAMAWA	ANSI	
L2-LI A	General purpose, long shank	JIS	456
E1111	YAMAWA		145
EH-HI	For hard steel <45HBC	JIS	474
	For hard steel x is fine	310	111-1

Central OH = for blind hole with through coolant hole Radial OH = for through hole with radial coolant hole

ZELX MOLD	For hard steel <45HRC	DINANSI271JIS	CT-FC	For cast iron	DIN ANSI JIS	158 277 481
SU-HT	YAMAWA For stainless steel	DINANSIJIS458	N-CT-LA	For Aluminium alloy	DIN ANSI JIS	274 478
GG-HT	For cast iron	DIN 147 ANSI 264 JIS 461	N-CT-PO	For Aluminium alloy	DIN ANSI JIS	485
GG-HT-OH	For cast iron, central OH	DIN151ANSIJIS	MC-AD-CT	For Aluminium alloy, central OH, Synchro	DIN ANSI JIS	486
GG-HT (Coating)	For cast iron	DIN149ANSIJIS	EH-CT	For hardened steel 45-55HRC	DIN ANSI JIS	160 488
GG-HT-OH (Coating)	For cast iron, central OH	DIN 152 ANSI JIS	UH-CT	For hardened steel 50-63HRC	DIN ANSI JIS	162 489
LA-HT	For wrought or die-cast Aluminium	DIN153ANSIJIS463	HFICT-P	Ultra Fast, cast iron, radial OH, Synchro	DIN ANSI JIS	492
AXE-HT	For die-cast Aluminium, Synchro	DIN 154 ANSI 266 JIS 465	HFICT-B	Ultra Fast, cast iron, central OH, Synchro	DIN ANSI JIS	493
MG-HT	For Magnesium alloy	DIN ANSI JIS 466	HFACT-P	<u>уамажа</u> Ultra Fast, Aluminium, radial OH, Synchro	DIN ANSI JIS	490
PL1	For plastic material	DIN ANSI JIS 470	HFACT-B	Ultra Fast, Aluminium, central OH, Synchro	DIN ANSI JIS	491

Carbide taps

Central OH = for blind hole with through coolant hole Radial OH = for through hole with radial coolant hole

(page numbers refer to the 2016-17 Yamawa General Catalogue)

Roll taps			Pipe taps	- Gas (G)		
R-D	General purpose	DIN 166 ANSI JIS	SP	General purpose	DIN ANSI JIS	56 586
R-D (Coating)	General purpose	DIN 167 ANSI JIS	LS-SP-PF	General purpose, long shank	DIN ANSI JIS	587
R-D (Coating)	General purpose	DIN168ANSIIJISI	SP OX	General purpose	DIN ANSI JIS	63
R+V	General purpose, Version Up	DIN ANSI JIS 510	SP (Coating)	General purpose	DIN ANSI JIS	58
N+RZ N-RZ	For steel	DIN 170 ANSI 282 JIS 496	LO-SP	General purpose	DIN ANSI JIS	71
LS-N-RZ	For steel, long shank	DIN ANSI JIS 501	LO-SP OX	General purpose	DIN ANSI JIS	74
SC-TL-RZ	For steel and stainless steel	DIN ANSI JIS 518	PH-SP	For hard steel <38HRC	DIN ANSI JIS	76
SURZ	For steel and stainless steel	DIN ANSI JIS 520	SP-VA	YAMAWA For stainless steel	DIN ANSI JIS	81
OL-RZ	Dry tapping	DIN 171 ANSI 290 JIS 512	SU2-SP	For stainless steel, Duplex, Synchro	DIN ANSI JIS	87
HP+RZ HP-RZ	For steel and stainless steel	DIN 172 ANSI 291 JIS 514	РО	General purpose	DIN ANSI JIS	118
MHRZ	For medium hard carbon steel	DIN 174 ANSI 294 JIS 522	PO OX	General purpose	DIN ANSI JIS	125
MS+RS	Miniature	DINANSIJIS524	PO (Coating)	General purpose	DIN ANSI JIS	120
HPsRZ	YAMAWA MURDO Miniature, high performance	DIN ANSI JIS 524	HT	General purpose	DIN ANSI JIS	143 582
N+RS N-RS	For non-ferrous material	DIN 169 ANSI 286 JIS 502	PF	General purpose	DIN ANSI JIS	583
LS-N-RS	For non-ferrous material, long shank	DIN ANSI JIS 508	PF-LH	General purpose, left hand thread	DIN ANSI JIS	584

80 **Think threads with**

		DIN	
LS-PF	TAMAWA	ANSI	
	General purpose, long shank	JIS	585
		DIN	
	YAMAWA	DIN	146
EH-HI		ANSI	
	For hard steel <45HRC	JIS	
		DIN	
	YAMAWA		
SU-PF	For stainlass staal	ANG	500
	FOI Stamless steel	JI5	588
		DIN	148
GG-HT		ANSI	
Gom	For cast iron	JIS	589
GG-HT		DIN	150
(Conting)		ANSI	
(Coating)	For cast iron	JIS	
	THURSDAY	DIN	
CT-PF		ANSI	
	For cast iron and brass carbido	211.	

Pipe taps - Rp (BSPP)

		DIN	
SP-PS	TAMAWA	ANSI	
	General purpose	JIS	579
	VAMANNA	DIN	
LS-SP-PS	Dalilaina	ANSI	
	General purpose, long shank	JIS	
	VAN DWA	DIN	
Rp		ANSI	
	General purpose	JIS	575
	TRANSPORT	DIN	
PS			
	General purpose	JIS	576
	YAMAWA		
PSLH		ANSI	
	General purpose, left hand thread	JIS	577
	Villian	DIN	
LS-PS	Dallotta	ANSI	
	General purpose, long shank	JIS	578
		DIN	
CT-PS		ANSI	
	For cast iron and brass, carbide	JIS	

Pipe taps - Rc (BSPT)

		DIN	
SP-PT	TAMAWA	ANSI	
	General purpose	JIS	558
		DIN	
CD_C_DT	YAMAWA	ANSI	
51-5-11	General purpose, short type (lg)	JIS	559
		DIN	
	YAMAWA-		
3P-P1-A	General purpose, short type (lg)	JIS	
	VAMAWA	DIN	
LS-SP-PT		ANSI	
	General purpose, long shank	JIS	561
		DIN	
I S-SP-S-PT	YAMAWA	ANSI	
	General purpose, long shank, short type (lg)	JIS	562
	· · · · ·	DIN	
	УАМАНА		
INT-PT	For stainloss steel	ANSI	562
	FOI Stamless steel	010	202
INT-S-PT		DIN	
	TAMAWA	ANSI	
	For stainless steel, short type (lg)	JIS	564
	and the second s	DIN	
	YAMAWA	ANSI	
LJ-INI-PI	For stainless steel, long shank	JIS	565
	· · · · · · · · · · · · · · · · · · ·		
	YAMAWA	DIN	
LS-INT-S-PT		ANSI	
	For stainless steel, long shank	JIS	566
		DIN	
Rc	TAMAKA	ANSI	
	General purpose	JIS	
		DIM	
DT	YAMARA	ANSI	
P I	General purpose	JIS	551
	MANAGEMENT AND	DIN	
PT-LH	Concerning to the second states of	ANSI	
	General purpose, left hand thread	JIS	552
		DIN	
PT-X	TAMAWA	ANSI	
	General purpose, short type (lg)	JIS	553
		DIN	
S_DT	YAMAWA	ANSI	
3-61	General purpose, short type (lg)	JIS	554
	VAMAWA	DIN	
S-PT <u>LH</u>		ANSI	
	General purpose, short type (lg), left hand	JIS	

(page numbers refer to the 2016-17 Yamawa General Catalogue)

Pipe taps	- Rc (BSPT)		
LS-PT	General purpose, long shank	DIN ANSI JIS	556
LS-S-PT	чамама General purpose, long shank, short type (lg)	DIN ANSI JIS	557
LC-PT	For low carbon steel	DIN ANSI JIS	567
LC-S-PT	For low carbon steel	DIN ANSI JIS	568
SU-PT	For stainless steel	DIN ANSI JIS	569
SU-S-PT	For stainless steel, short type (lg)	DIN ANSI JIS	570
FC-PT	For cast iron	DIN ANSI JIS	571
FC-S-PT	For cast iron, short type (lg)	DIN ANSI JIS	572
CT-PT	For cast iron and brass, carbide	DIN ANSI JIS	573
CT-S-PT	For cast iron and brass, carbide	DIN ANSI JIS	574

Taps for NPT, NPTF, NPS, NPSF

		DIN	
SP NPT	- TAMANYA	ANSI	
	General purpose	JIS	594
		DIN	
I S-SP-S-NPT	YAMAWA	ANSI	
	General purpose, long shank, short type (lg)	JIS	
		DIN	
	YAMAWA	ANSI	302
	For stainless steel	JIS	
INT-NPT	For stainless steel	JIS	596
	YAMAWA	DIN	
INT-S-NPT	Foundation loss stand all shout to use (lat)	ANSI	
	For stainless steel, short type (ig)	JIS	597
		DIN	
NPT		ANSI	
	General purpose	JIS	591
		DIN	
S-NPT	YAMAWA	ANSI	
	General purpose, short type (lg)	JIS	592
	·	DIN	
	YAMAWA		
LS-INP I	General purpose, long shank	JIS	593
	YAMAWA	DIN	
NPT	Conservation	ANSI	305
	General purpose	JIS	
	and a summer	DIN	
		ANSI	304
INFI	For hard steel <45HRC	JIS	
		DIN	
INT-NPT	TRACTOR OF TRACTOR	ANSI	
	For stainless steel	JIS	
		DIN	
NPT-CI	TAMAWA	ANSI	307
	For cast iron	JIS	
		DIN	
NDTE	YAMAWA	ANSI	
	General purpose	JIS	598
		DIN	
	YAMAWA		
LS-INPTF	General purpose, long shank	JIS	599
NIDTE	TAMAWAT	DIN	
NPTF	Coporal purposo	ANSI	308
		013	
	YAMAWA	DIN	
		ANSI	303
	For stainless steel	JIS	
		DIN	
NPTF-CI_	YAMAWA	ANSI	309
	For cast iron	JIS	

NPS		DIN	
	TAMAWA	ANSI	
	General purpose	JIS	
		DIN	
NPS	TAMAWA	ANSI	
	General purpose	JIS	
		DIN	
NPSF	Танана	ANSI	
	General purpose	JIS	
NPSF	VANALUA	DIN	
	TANANA	ANSI	
	General purpose	JIS	

Taps EG (S1	T) for helical coil		
SP STI	General purpose	DIN ANSI JIS	209
SP OX STI	YAMAWA General purpose	DIN ANSI JIS	211
AL-SP	General purpose	DIN ANSI JIS	367
ZELX NI SP STI	For Nickel base alloy	DIN ANSI JIS	218
PO STI	General purpose	DIN ANSI JIS	242
PO OX STI	General purpose	DIN ANSI JIS	244
ZELX NI PO STI	YAMAWA For Nickel base alloy	DIN ANSI JIS	249
HT STI	General purpose	DIN ANSI JIS	267
HT OX STI	General purpose	DIN ANSI JIS	269
AL-HT	General purpose	DIN ANSI JIS	467
N-RS	For non-ferrous material	DIN ANSI JIS	507

Thread m	ills		
		DIN	
MC-CSIC	TAMAWA	ANSI	
	Metric, carbide	JIS	
	YAMAWA	DIN	
MC-CSLC	T Di Li L	ANSI	
	Taper Pipe, carbide	JIS	605
	https://www.	DIN	
MCCSIC	AWAMAY	ANSI	
	Cylindrical Pipe, carbide	JIS	606
	· · · · · · · · · · · · · · · · · · ·		
	VAMAWA	DIN	
MC-HLC		ANSI	
	Metric, HSS-Co	JIS	607
		DIN	
MCLUC	YAMAWA		
IVIC-HLC	Taper Pipe HSS-Co		
	Taper Fipe, 1155-00	010	008
		DIN	
MC-HIC	TAMAWA	ANSI	
	Cylincrical Pipe, HSS-Co	JIS	609

(page numbers refer to the 2016-17 Yamawa General Catalogue)

Dies				Centering	l too
D PO		Spiral pointed	DIN 178 ANSI 314 JIS	CD-A	Low hel
D			DIN ANSI JIS 612	CD-R	Low hel
D LH	3	Left hand thread	DIN ANSI JIS 621	CESA	High he
D PF	$\mathbf{\mathfrak{S}}$	G thread	DIN ANSI JIS 624	CE-S	Low hel
D PF LH	$\overline{\mathbf{C}}$	G thread, left hand	DIN ANSI JIS 625	CD-S	Low hel
D NPSM	3		DIN ANSI JIS 626	CD-S LH	Low hel
D PT	3	Rc (BSPT)	DIN ANSI JIS 627	CE-S V	High he
D PT LH	$\mathbf{\hat{c}}$	Rc (BSPT), left hand thread	DIN ANSI JIS 628	C-CD-S	Type A 6
D NPT	3		DIN ANSI JIS 629	CE-SL	High he
D NPTF	3		DIN ANSI	CD-SL	Low hel
MS-RS-D/		Rolling die and miniature rolling die	DIN ANSI	CE-SL V	High he
N-RSD		New rolling die	DIN ANSI	CD-SL V	Low hel
RD-DH		Die holder	DIN ANSI	C-CD-SL	Type A 6
RD-DC		Collet for die holder	JIS 634 DIN ANSI	CEQA	High he
		Die holder	JIS 635 DIN ANSI 315	CE-Q	High he
	0.		JIS 636	CD-Q	Low hel

Centering	tools		
		DIN	104
CD-A	YAMAWA		184
	Low helix angle, type A 60°	JIS	
		DIN	
	YAMAWA		185
CD-N	Low helix angle, type R	JIS	
		DIN	
CECA	YAMAWA	ANSI	
CESA	High helix angle, JIS type A 60°	JIS	640
		DIN	
CE-S	YAMAWA	ANSI	
CL-J	Low helix angle, type A 60°	JIS	641
		DIN	
CD-S	YAMAWA	ANSI	
CD-3	Low helix angle, type A 60°	JIS	642
		DIN	
	YAMAWA	ANSI	
	Low helix angle, type A 60°, left	JIS	643
		DIN	
CF-SV	YAMAWA	ANSI	
	High helix angle, type A 60°	JIS	644
		DIN	
C-CD-S	YAMAWA	ANSI	
	Type A 60°, carbide	JIS	645
		DIN	
CE-SI	YAMAWA	ANSI	
	High helix angle, type A 60°, long	JIS	646
		DIN	
CD-SI	YAMAWA	ANSI	
	Low helix angle, type A 60°, long	JIS	647
		DIN	
CE-SL V	YAMAWA	ANSI	
	High helix angle, type A 60°, long	JIS	648
CD-SL V		DIN	
	Ташала	ANSI	
	Low helix angle, type A 60°, long	JIS	649
	VAMAWA	DIN	
C-CD-SL		ANSI	
	Type A 60°, long, carbide	JIS	650
	VAMAWA	DIN	
CEQA	Link haliwan ala JIC tama A 00%	ANSI	
	High helix angle, JIS type A 90	115	651
	YAMAWA	DIN	
CE-Q	High bolix angle type A 00°	ANSI	652
	Thigh helix angle, type A 90	010	052
	YAMAWA	DIN	
CD-Q	Low belix angle type A 90°	ANSI	653
	נטא חפוג מוקוב, נאףב א 20	010	- 055
	YAMAWA	DIN	
CD-QLH	Low belix angle type A 90° left	JIS	654
	YAMAWA		

CD-QV	Low helix angle, type A 90°	DIN ANSI JIS 656	JO-CSQM	Joint tool - countersink	DIN ANSI JIS	678
C-CD-Q		DIN ANSI JIS 657	JO-HOLDER	loint tool holder	DIN ANSI JIS	679
CE-QL	YAMAWA	DIN ANSI JIS 658	PE-Q	Point Drill 90°	DIN ANSI JIS	681
CE-QL V	YAMAWA	DIN ANSI JIS 659	PE-QV	Point Drill 90°	DIN ANSI JIS	682
C-CD-QL	YAMAWA Type A 90° carbide long	DIN ANSI JIS 660	C-PE-QV	VAMAWA	DIN ANSI JIS	683
CEIR	YAMAWA	DIN ANSI JIS 661	PE-QL V	Point Drill 90° long	DIN ANSI JIS	684
CESB	YAMAWA	DIN ANSI JIS 663	PE-S	YAMAWA	DIN ANSI JIS	685
CESC	YAMAWA	DIN ANSI JIS 664	PE-S V	Point Drill 60°	DIN ANSI JIS	686
MHCDS	For medium hard carbon steel, high speed	DIN ANSI JIS 666	C-PE-S V	Point Drill 60°, carbide	DIN ANSI JIS	687
JO-CES	Joint tool - high helix angle, type A 60°	DIN ANSI JIS 669	PE-SL V	YAMAWA	DIN ANSI JIS	688
JO-CES V	Joint tool - high helix angle, type A 60°	DIN ANSI JIS 670	NC-SD V	YAMAWA NC - 90° starting drill	DIN ANSI JIS	690
JO-CDS	Joint tool - low helix angle, type A 60°	DIN ANSI JIS 671	NC-SD	YAMAWA NC - 125° starting drill	DIN ANSI JIS	690
JO-CDS V	Joint tool - low helix angle, type A 60°	DIN ANSI JIS 672	CS-Q	90° countersink for CNC	DIN ANSI JIS	692
JO-C-CDS	Joint tool, type A 60°, carbide	DIN ANSI JIS 673	CS-QM	60°-90° countersink	DIN ANSI JIS	693
JO-PEQ	Joint tool - Point Drill 90°	DIN ANSI JIS 674	CS-G	Drill for submarine gate	DIN ANSI JIS	694
JO-PEQ V	Joint tool - Point Drill 90°	DIN ANSI JIS 675				
JO-C-PEQ V	Joint tool - Point Drill 90°	DIN ANSI JIS 676				
JO-NCSD V	Joint tool - NC starting drill	DIN ANSI JIS 677				

Measuring tools, shank adjusters, collets

SIT	YAMAWA		526
	Gauge	JIS	526
	AND THE OTHER STREET	DIN	532
SITD	TAMANA	ANSI	532
	Gauge, Tandem type	JIS	532
CPC-S	VAMAW/A	DIN	
		ANSI	296
	Cylincrical check pin	JIS	538
CPC-T	YAMAWA	DIN	
		ANSI	299
	Taper check pin	JIS	540
		DIN	
	YAMAWA	DIN	
CPR-S		ANSI	
	Cylincrical check pin for roll tap	JIS	541
		DIN	
CPR-T	YAMAWA		
	Tapar chack pin for roll tap		542
	тарег спеск ріптогтоп тар	315	543
		DIN	
C۸	YAMAWA		
JA	Shank adjuster	JIS	545
	Sharik adjuster	0.0	J-J
	Jime .	DIN	546
ΤΔ		ANSI	546
	Tap collet	JIS	546

Edit. 1/16